论文标题

相对论辐射介导的冲击中的磁驱动耦合

Magnetically driven coupling in relativistic radiation-mediated shocks

论文作者

Mahlmann, J. F., Vanthieghem, A., Philippov, A. A., Levinson, A., Nakar, E., Fiuza, F.

论文摘要

宇宙爆炸的光子富含光子环境中的辐射阻力可以通过诱导相对流等离子体成分之间的速度扩散来播种动力学不稳定性。这种微扰动可能会印在辐射介导的冲击的突破信号上。然而,电击过渡的减速区域中的大规模横向磁场可以通过防止电子旋律对和重离子物种之间的速度分离的发展来抑制主体动力学不稳定性。我们使用一维(1D)五流体辐射转移代码来生成减速区域中辐射阻力和等离子体组成的自洽轮廓。为了增加磁化化,我们的模型预测了迅速增长的成对倍数,并且在整个减速区域中会产生相似的辐射阻力。我们提取临界磁化参数$σ_{c} $,确定在达到下游的各向同性化之前,三物种等离子体可以发展动力学不稳定性的限制磁场强度。对于相对论的单离子等离子体,用$γ_{u} = 10 $在相对论辐射介导的冲击的上游中进行了$γ_{u} = 10 $,我们发现阈值$σ_{c} \ of 10^{ - 7} $用于微扰动的开始。在多离子成分的情况下,抑制血浆不稳定性可能需要更高的值$σ_{C} $。识别电击信号中微扰动性的高能量特征,并将其与本工作中提供的磁化极限结合在一起,将使人们更深入地了解宇宙爆炸的磁性环境,例如超新星,伽马射线爆发,伽马射线爆发和中子恒星二元合并。

The radiation drag in photon-rich environments of cosmic explosions can seed kinetic instabilities by inducing velocity spreads between relativistically streaming plasma components. Such microturbulence is likely imprinted on the breakout signals of radiation-mediated shocks. However, large-scale, transverse magnetic fields in the deceleration region of the shock transition can suppress the dominant kinetic instabilities by preventing the development of velocity separations between electron-positron pairs and a heavy ion species. We use a one-dimensional (1D) five-fluid radiative transfer code to generate self-consistent profiles of the radiation drag force and plasma composition in the deceleration region. For increasing magnetization, our models predict rapidly growing pair multiplicities and a substantial radiative drag developing self-similarly throughout the deceleration region. We extract the critical magnetization parameter $σ_{c}$, determining the limiting magnetic field strength at which a three-species plasma can develop kinetic instabilities before reaching the isotropized downstream. For a relativistic, single ion plasma drifting with $γ_{u} = 10$ in the upstream of a relativistic radiation-mediated shock, we find the threshold $σ_{c}\approx 10^{-7}$ for the onset of microturbulence. Suppression of plasma instabilities in the case of multi-ion composition would likely require much higher values of $σ_{c}$. Identifying high-energy signatures of microturbulence in shock-breakout signals and combining them with the magnetization limits provided in this work will allow a deeper understanding of the magnetic environment of cosmic explosions like supernovae, gamma-ray bursts, and neutron star binary mergers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源