论文标题
抑郁严重程度估计的语义相似性模型
Semantic Similarity Models for Depression Severity Estimation
论文作者
论文摘要
抑郁症构成了全球严重的公共卫生问题。但是,公共卫生系统的病例检测和诊断能力有限。在这方面,社交媒体的广泛使用开辟了一种大规模访问公共信息的方法。计算方法可以通过利用此用户生成的社交媒体内容来作为快速筛选的支持工具。本文提出了一个有效的语义管道,可以根据社交媒体著作研究个体的抑郁严重程度。我们选择测试用户句子,以在与抑郁症状和严重程度相对应的代表性培训句子的指数上产生语义排名。然后,我们使用这些结果中的句子作为预测用户症状严重程度的证据。为此,我们探索了不同的聚合方法,以回答每个症状的四个贝克抑郁量库存(BDI)选项之一。我们评估了两个基于REDDIT的基准测试的方法,在衡量抑郁症的严重程度方面,与最新状态相比,取得了30 \%的改善。
Depressive disorders constitute a severe public health issue worldwide. However, public health systems have limited capacity for case detection and diagnosis. In this regard, the widespread use of social media has opened up a way to access public information on a large scale. Computational methods can serve as support tools for rapid screening by exploiting this user-generated social media content. This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings. We select test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels. Then, we use the sentences from those results as evidence for predicting users' symptom severity. For that, we explore different aggregation methods to answer one of four Beck Depression Inventory (BDI) options per symptom. We evaluate our methods on two Reddit-based benchmarks, achieving 30\% improvement over state of the art in terms of measuring depression severity.