论文标题
扩展的Bondi-Metzner-Sachs组的几何作用在四个维度
Geometric action for extended Bondi-Metzner-Sachs group in four dimensions
论文作者
论文摘要
在将构造应用于四个维度的扩展的邦迪 - 米茨纳 - 萨克斯组之前,要制定对几何作用的哈密顿分析的约束分析。对于与扩展BMS $ _4 $发电机相关的任何汉密尔顿人,此操作提供了两个时期的田间理论,以及一个时空维度,其Noether的Poisson Bracket Algebra Noether收费的泊松支架实现了扩展的BMS $ _4 $ lie lie代数。该模型的泊松结构包括在天体全息图中出现的运算符产品扩展的经典版本。此外,该模型还重现了无限度在无限度的非放射性渐近平面空间的演化方程。
The constrained Hamiltonian analysis of geometric actions is worked out before applying the construction to the extended Bondi-Metzner-Sachs group in four dimensions. For any Hamiltonian associated with an extended BMS$_4$ generator, this action provides a field theory in two plus one spacetime dimensions whose Poisson bracket algebra of Noether charges realizes the extended BMS$_4$ Lie algebra. The Poisson structure of the model includes the classical version of the operator product expansions that have appeared in the context of celestial holography. Furthermore, the model reproduces the evolution equations of non-radiative asymptotically flat spacetimes at null infinity.