论文标题

潮汐需要词干:通过动态网络进行当地运行的时空相互激动的点过程,用于改善阿片类药物过量的死亡预测

Tides Need STEMMED: A Locally Operating Spatio-Temporal Mutually Exciting Point Process with Dynamic Network for Improving Opioid Overdose Death Prediction

论文作者

Liao, Che-Yi, Garcia, Gian-Gabriel, Paynabar, Kamran, Dong, Zheng, Xie, Yao, Jalali, Mohammad S.

论文摘要

我们使用动态网络(STEMMED)开发一个时空的相互激动人心的点过程,即一个点过程网络,其中每个节点都会建模具有动态相互激发结构的唯一社区 - 毒品事件流,从而考虑了其他节点的影响。我们表明,词干可以分解为逐节点,这表明可以进行可处理的分布式学习过程。仿真表明,该学习算法可以准确恢复已知的STEMMED参数,尤其是对于小型网络和长的数据 - 曲线。接下来,我们将这种逐节点分解变成在线合作多期预测框架,该框架对操作错误而言渐近可靠,以促进邻近社区中与阿片类药物相关的过量死亡(OOD)趋势。在我们的数值研究中,我们使用马萨诸塞州的个人级别数据和县级人口统计数据进行了参数化。对于任何节点,我们观察到,附近位置同一药物类别中的OOD对未来的OOD趋势的影响最大。此外,历史事件触发的OOD的预期比例在各个县差异很大,范围在30%-70%之间。最后,与公认的预测模型相比,在实用的在线预测环境中,基于STEM的基于STEM的合作框架平均将预测错误降低了60%。利用越来越多的公共卫生监视数据,STEMMED可以提供对本地OOD趋势的准确预测,并突出跨社区和药物类型的OOD之间的复杂相互作用。此外,STEMMED增强了地方和联邦政府实体之间的协同作用,这对于设计有影响力的政策干预至关重要。

We develop a Spatio-TEMporal Mutually Exciting point process with Dynamic network (STEMMED), i.e., a point process network wherein each node models a unique community-drug event stream with a dynamic mutually-exciting structure, accounting for influences from other nodes. We show that STEMMED can be decomposed node-by-node, suggesting a tractable distributed learning procedure. Simulation shows that this learning algorithm can accurately recover known parameters of STEMMED, especially for small networks and long data-horizons. Next, we turn this node-by-node decomposition into an online cooperative multi-period forecasting framework, which is asymptotically robust to operational errors, to facilitate Opioid-related overdose death (OOD) trends forecasting among neighboring communities. In our numerical study, we parameterize STEMMED using individual-level OOD data and county-level demographics in Massachusetts. For any node, we observe that OODs within the same drug class from nearby locations have the greatest influence on future OOD trends. Furthermore, the expected proportion of OODs triggered by historical events varies greatly across counties, ranging between 30%-70%. Finally, in a practical online forecasting setting, STEMMED-based cooperative framework reduces prediction error by 60% on average, compared to well-established forecasting models. Leveraging the growing abundance of public health surveillance data, STEMMED can provide accurate forecasts of local OOD trends and highlight complex interactions between OODs across communities and drug types. Moreover, STEMMED enhances synergies between local and federal government entities, which is critical to designing impactful policy interventions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源