论文标题
多项式尾巴的稀疏,高维时间序列的强大估计
Robust Estimation of Sparse, High Dimensional Time Series with Polynomial Tails
论文作者
论文摘要
由于健康,工程,金融和社会科学方面的新应用,高维矢量自动加工(VAR)最近引起了很多兴趣。分析VAR时出现三个问题:(a)在许多时间序列的存在下,模型的高维质,这给挑战带来了一致估计其参数; (b)时间依赖的存在引入了对各种估计程序的理论分析的其他挑战; (b)在许多应用中存在沉重的尾巴。最近的工作,例如[Basu and Michailidis,2015年],[Kock和Callot,2015年],基于$ \ ell_1 $ lasso Procedure,已经解决了对稀疏高维高稳定的高斯VAR模型的一致估计。此外,从某种意义上说,获得的利率是最佳的,因为它们将其与IID数据相匹配,以及时间依赖性的乘法因素(这是“价格”)。 但是,在现有文献中,第三个问题仍然没有解决。本文将现有的结果扩展到以下重要方向:它考虑了由重尾均匀的或异性噪声噪声过程驱动的稀疏高尺寸VAR模型参数的一致估计(这些噪声噪声过程并不具有所有时刻)。采用了一种强大的惩罚方法(例如,Lasso),用于获得基础模型参数的最佳一致性率和相应的有限样本范围,尽管为IID数据匹配这些参数,尽管为时间依赖性支付了价格。理论结果在VAR模型以及其他流行的时间序列模型上进行了说明。值得注意的是,所使用的关键技术工具是针对重型尾部依赖过程的单个浓度。
High dimensional Vector Autoregressions (VAR) have received a lot of interest recently due to novel applications in health, engineering, finance and the social sciences. Three issues arise when analyzing VAR's: (a) The high dimensional nature of the model in the presence of many time series that poses challenges for consistent estimation of its parameters; (b) the presence of temporal dependence introduces additional challenges for theoretical analysis of various estimation procedures; (b) the presence of heavy tails in a number of applications. Recent work, e.g. [Basu and Michailidis, 2015],[Kock and Callot,2015], has addressed consistent estimation of sparse high dimensional, stable Gaussian VAR models based on an $\ell_1$ LASSO procedure. Further, the rates obtained are optimal, in the sense that they match those for iid data, plus a multiplicative factor (which is the "price" paid) for temporal dependence. However, the third issue remains unaddressed in extant literature. This paper extends existing results in the following important direction: it considers consistent estimation of the parameters of sparse high dimensional VAR models driven by heavy tailed homoscedastic or heteroskedastic noise processes (that do not possess all moments). A robust penalized approach (e.g., LASSO) is adopted for which optimal consistency rates and corresponding finite sample bounds for the underlying model parameters are obtain that match those for iid data, albeit paying a price for temporal dependence. The theoretical results are illustrated on VAR models and also on other popular time series models. Notably, the key technical tool used, is a single concentration bound for heavy tailed dependent processes.