论文标题
用于太空桁架结构前后的自适应搜索空间分解方法
Adaptive search space decomposition method for pre- and post- buckling analyses of space truss structures
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The paper proposes a novel adaptive search space decomposition method and a novel gradient-free optimization-based formulation for the pre- and post-buckling analyses of space truss structures. Space trusses are often employed in structural engineering to build large steel constructions, such as bridges and domes, whose structural response is characterized by large displacements. Therefore, these structures are vulnerable to progressive collapses due to local or global buckling effects, leading to sudden failures. The method proposed in this paper allows the analysis of the load-equilibrium path of truss structures to permanent and variable loading, including stable and unstable equilibrium stages and explicitly considering geometric nonlinearities. The goal of this work is to determine these equilibrium stages via optimization of the Lagrangian kinematic parameters of the system, determining the global equilibrium. However, this optimization problem is non-trivial due to the undefined parameter domain and the sensitivity and interaction among the Lagrangian parameters. Therefore, we propose formulating this problem as a nonlinear, multimodal, unconstrained, continuous optimization problem and develop a novel adaptive search space decomposition method, which progressively and adaptively re-defines the search domain (hypersphere) to evaluate the equilibrium of the system using a gradient-free optimization algorithm. We tackle three benchmark problems and evaluate a medium-sized test representing a real structural problem in this paper. The results are compared to those available in the literature regarding displacement-load curves and deformed configurations. The accuracy and robustness of the adopted methodology show a high potential of gradient-free algorithms in analyzing space truss structures.