论文标题

迭代学习控制 - 深度潜水

Iterative Learning Control -- Deep Dive

论文作者

Koscielniak, Shane Rupert

论文摘要

可以通过直接迭代各种输入的方程来评估迭代学习控制器(ILC)的稳定性和收敛性,或者通过找到迭代系统的特征值,或形成Z传输和应用极点--零或等效的根端来评估。两个经常使用的标准是(i)差异矢量的渐近收敛(AC),以及(ii)矢量规范的单调收敛(MC)。后者(MC)的Z域对应物。在本文中,我们将所有三种方法和两种收敛测试应用于带有ILC包装器的简单工厂。使用一,两届学习功能。然后,我们可以提出问题:所有测试是否有效,他们是否同意稳定性?

The stability and convergence of an Iterative Learning Controller (ILC) may be assessed either by directly iterating the equations for a variety of inputs, or by finding the eigenvalues of the iterated system, or by forming the Z-transform and applying pole-zero or equivalent root locus. Two often-used criteria are (i) Asymptotic Convergence (AC) of the difference vectors, and (ii) mono-tonic convergence (MC) of the vector norm. The latter (MC) has a Z- domain counterpart. In this paper we apply all three methods and both convergence tests to a simple plant with an ILC wrapper. One, two and three-term learning functions are used. We can then ask the questions: do all the tests work, and do they agree on the stability?

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源