论文标题

CurvPNP:用深曲率Denoiser插入插件的盲图恢复

CurvPnP: Plug-and-play Blind Image Restoration with Deep Curvature Denoiser

论文作者

Li, Yutong, Duan, Yuping

论文摘要

由于开发了基于深度学习的Denoisers,插件策略在图像恢复问题上取得了巨大的成功。但是,现有的插件图像恢复方法是针对非盲型高斯denoising设计的,例如Zhang等(2022),其性能明显地恶化了未知的噪声。为了推动插件图像修复的限制,我们提出了一个新颖的框架,该框架具有盲gaussian先验,该框架可以解决现实世界中更复杂的图像恢复问题。更具体地说,我们通过将噪声水平作为变量建立了一个新的图像恢复模型,该噪声级别由两阶段的盲型高斯denoiser实施,该变量由噪声估计子网和一个deno的子网络组成,其中噪声估计子网为盲噪声删除的噪声提供了噪声水平。我们还将曲率图引入编码器架构和受监督的注意模块中,以实现高度灵活而有效的卷积神经网络。提供了图像Denoising,Deblurring和单位图像超分辨率的实验结果,以证明我们深曲率Denoiser的优势以及所得的插件盲图恢复方法比基于先进的模型和基于学习的方法。我们的模型被证明能够恢复精细的图像细节和微小的结构,即使在不同的图像恢复任务中噪声水平未知。源代码可在https://github.com/duanlab123/curvpnp上找到。

Due to the development of deep learning-based denoisers, the plug-and-play strategy has achieved great success in image restoration problems. However, existing plug-and-play image restoration methods are designed for non-blind Gaussian denoising such as zhang et al (2022), the performance of which visibly deteriorate for unknown noises. To push the limits of plug-and-play image restoration, we propose a novel framework with blind Gaussian prior, which can deal with more complicated image restoration problems in the real world. More specifically, we build up a new image restoration model by regarding the noise level as a variable, which is implemented by a two-stage blind Gaussian denoiser consisting of a noise estimation subnetwork and a denoising subnetwork, where the noise estimation subnetwork provides the noise level to the denoising subnetwork for blind noise removal. We also introduce the curvature map into the encoder-decoder architecture and the supervised attention module to achieve a highly flexible and effective convolutional neural network. The experimental results on image denoising, deblurring and single-image super-resolution are provided to demonstrate the advantages of our deep curvature denoiser and the resulting plug-and-play blind image restoration method over the state-of-the-art model-based and learning-based methods. Our model is shown to be able to recover the fine image details and tiny structures even when the noise level is unknown for different image restoration tasks. The source codes are available at https://github.com/Duanlab123/CurvPnP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源