论文标题
Bi-Asymptotic $ c $ - 扩展
Bi-Asymptotic $c$-Expansivity
论文作者
论文摘要
在本文中,我们在度量空间上定义了双重$ C $的表达图,并研究了其与其他扩张性变体(例如双重膨胀的地图和$ n $ Expandive Maps)的关系。我们还提供了一个例子,以确定膨胀的同构不必双重膨胀。最后,我们证明了光谱分解定理,用于双重c $ c $ expansive的连续图形图,并在紧凑的度量空间上具有阴影属性。
In this paper, we define bi-asymptotically $c$-expansive maps on metric spaces and study its relationship with other variants of expansivity such as bi-asymptotically expansive maps and $N$-expansive maps. We also provide an example to establish that expansive homeomorphisms need not be bi-asymptotically expansive. Finally we prove a spectral decomposition theorem for bi-asymptotically $c$-expansive continuous surjective maps with the shadowing property on compact metric spaces.