论文标题

自动检测,分类和开发人员在移动应用中违反诚实的经验

Automated Detection, Categorisation and Developers' Experience with the Violations of Honesty in Mobile Apps

论文作者

Obie, Humphrey O., Du, Hung, Madampe, Kashumi, Shahin, Mojtaba, Ilekura, Idowu, Grundy, John, Li, Li, Whittle, Jon, Turhan, Burak, Khalajzadeh, Hourieh

论文摘要

诚实,社会责任,公平,隐私等人的价值观被个人和社会认为很重要。软件系统(包括移动软件应用程序(APP))可能会忽略或违反此类价值,从而对个人和社会产生负面影响。尽管一些作品研究了软件工程中人类价值观的不同方面,但该混合方法研究的重点是诚实作为关键的人类价值。特别是,我们研究了(i)如何检测移动应用程序中的诚实违规行为,(ii)移动应用程序中的诚实违规类型,以及(iii)应用程序开发人员对这些检测到的诚实违规行为的观点。我们首先开发和评估7个机器学习(ML)模型,以自动从最终用户的角度检测应用程序评论中诚实价值的侵犯。最有希望的是一个深神网络模型,F1得分为0.921。然后,我们对401项评论进行了手动分析,其中包含诚实违规行为,并将移动应用程序中的诚实违规表征分为10个类别:不公平的取消和退款政策;虚假广告;熟悉订阅;作弊系统;信息不正确;不公平的费用;没有服务;删除评论;模仿和欺诈性外观应用程序。然后,对移动开发人员进行的开发人员调查和访谈研究确定了移动应用程序中诚实违规的7个关键原因,以及避免或解决此类违规行为的8种策略。我们开发人员研究的发现还表达了诚实违规行为可能给企业,开发人员和用户带来的负面影响。最后,应用程序开发人员的反馈表明,我们基于ML的原型模型可以在实践中具有有希望的好处。

Human values such as honesty, social responsibility, fairness, privacy, and the like are things considered important by individuals and society. Software systems, including mobile software applications (apps), may ignore or violate such values, leading to negative effects in various ways for individuals and society. While some works have investigated different aspects of human values in software engineering, this mixed-methods study focuses on honesty as a critical human value. In particular, we studied (i) how to detect honesty violations in mobile apps, (ii) the types of honesty violations in mobile apps, and (iii) the perspectives of app developers on these detected honesty violations. We first develop and evaluate 7 machine learning (ML) models to automatically detect violations of the value of honesty in app reviews from an end user perspective. The most promising was a Deep Neural Network model with F1 score of 0.921. We then conducted a manual analysis of 401 reviews containing honesty violations and characterised honest violations in mobile apps into 10 categories: unfair cancellation and refund policies; false advertisements; delusive subscriptions; cheating systems; inaccurate information; unfair fees; no service; deletion of reviews; impersonation; and fraudulent looking apps. A developer survey and interview study with mobile developers then identified 7 key causes behind honesty violations in mobile apps and 8 strategies to avoid or fix such violations. The findings of our developer study also articulate the negative consequences that honesty violations might bring for businesses, developers, and users. Finally, the app developers' feedback shows that our prototype ML-based models can have promising benefits in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源