论文标题

安全联合学习中的水印:基于客户端后门的验证框架

Watermarking in Secure Federated Learning: A Verification Framework Based on Client-Side Backdooring

论文作者

Yang, Wenyuan, Shao, Shuo, Yang, Yue, Liu, Xiyao, Liu, Ximeng, Xia, Zhihua, Schaefer, Gerald, Fang, Hui

论文摘要

联合学习(FL)允许多个参与者在不直接共享数据的情况下协作建立深度学习(DL)模型。因此,FL中的版权保护问题变得很重要,因为不可靠的参与者可以访问经过联合训练的模型。在安全FL框架中应用同态加密(HE)可防止中央服务器访问明文模型。因此,使用现有水印方案将水印嵌入中央服务器不再是可行的。在本文中,我们提出了一种新型的客户端FL水印计划,以解决Secure FL与HE中的版权保护问题。据我们所知,这是第一个将水印嵌入到安全FL环境下的模型的方案。我们设计了一个基于客户端背景的黑盒水印方案,以通过梯度增强的嵌入方法将预设计的触发器嵌入FL模型中。此外,我们提出了一种触发设置的施工机制,以确保无法伪造水印。实验结果表明,我们提出的计划为各种水印去除攻击和歧义攻击提供出色的保护性能和鲁棒性。

Federated learning (FL) allows multiple participants to collaboratively build deep learning (DL) models without directly sharing data. Consequently, the issue of copyright protection in FL becomes important since unreliable participants may gain access to the jointly trained model. Application of homomorphic encryption (HE) in secure FL framework prevents the central server from accessing plaintext models. Thus, it is no longer feasible to embed the watermark at the central server using existing watermarking schemes. In this paper, we propose a novel client-side FL watermarking scheme to tackle the copyright protection issue in secure FL with HE. To our best knowledge, it is the first scheme to embed the watermark to models under the Secure FL environment. We design a black-box watermarking scheme based on client-side backdooring to embed a pre-designed trigger set into an FL model by a gradient-enhanced embedding method. Additionally, we propose a trigger set construction mechanism to ensure the watermark cannot be forged. Experimental results demonstrate that our proposed scheme delivers outstanding protection performance and robustness against various watermark removal attacks and ambiguity attack.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源