论文标题

两个图的故事:多模式推荐的冰点和降解图结构

A Tale of Two Graphs: Freezing and Denoising Graph Structures for Multimodal Recommendation

论文作者

Zhou, Xin, Shen, Zhiqi

论文摘要

使用多模式功能(例如,图像和文本描述)的多模式推荐系统通常比仅基于用户项目交互的一般建议模型显示出更好的建议精度。通常,先前的工作将多模式特征融合到项目ID嵌入中以丰富项目表示形式,从而无法捕获潜在的语义项目 - 项目结构。在这种情况下,晶格建议您明确地学习项目之间的潜在结构,并实现多模式建议的最先进的性能。但是,我们认为晶格的潜在图形结构既低效率又不必要。在实验上,我们证明在培训之前冻结其项目 - 项目结构也可以实现竞争性能。基于这一发现,我们提出了一个简单而有效的模型,称为“自由”,该模型冻结了项目项目图,并同时将用户项目交互图形授予以获取多模式建议。从理论上讲,我们通过图谱透视图检查了自由的设计,并证明它在图谱上具有更紧密的上限。在降级用户项目交互图时,我们设计了一种对度敏感的边缘修剪方法,该方法在采样图时拒绝可能具有很高概率的嘈杂边缘。我们在三个现实世界数据集上评估了所提出的模型,并表明自由可以大大优于当前最强基准。与晶格相比,Freedom在建议精度的平均提高19.07%,同时将其内存的成本降低到大图上最高6美元。源代码可在以下网址获得:https://github.com/enoche/freedom。

Multimodal recommender systems utilizing multimodal features (e.g., images and textual descriptions) typically show better recommendation accuracy than general recommendation models based solely on user-item interactions. Generally, prior work fuses multimodal features into item ID embeddings to enrich item representations, thus failing to capture the latent semantic item-item structures. In this context, LATTICE proposes to learn the latent structure between items explicitly and achieves state-of-the-art performance for multimodal recommendations. However, we argue the latent graph structure learning of LATTICE is both inefficient and unnecessary. Experimentally, we demonstrate that freezing its item-item structure before training can also achieve competitive performance. Based on this finding, we propose a simple yet effective model, dubbed as FREEDOM, that FREEzes the item-item graph and DenOises the user-item interaction graph simultaneously for Multimodal recommendation. Theoretically, we examine the design of FREEDOM through a graph spectral perspective and demonstrate that it possesses a tighter upper bound on the graph spectrum. In denoising the user-item interaction graph, we devise a degree-sensitive edge pruning method, which rejects possibly noisy edges with a high probability when sampling the graph. We evaluate the proposed model on three real-world datasets and show that FREEDOM can significantly outperform current strongest baselines. Compared with LATTICE, FREEDOM achieves an average improvement of 19.07% in recommendation accuracy while reducing its memory cost up to 6$\times$ on large graphs. The source code is available at: https://github.com/enoche/FREEDOM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源