论文标题

残留的降解学习与跨光谱和空间的混合框架一起展开框架,用于压缩光谱成像

Residual Degradation Learning Unfolding Framework with Mixing Priors across Spectral and Spatial for Compressive Spectral Imaging

论文作者

Dong, Yubo, Gao, Dahua, Qiu, Tian, Li, Yuyan, Yang, Minxi, Shi, Guangming

论文摘要

为了获取快照光谱图像,提出了编码的光圈快照光谱成像(CASSI)。 CASSI系统的核心问题是从2D测量中恢复可靠且良好的3D光谱立方体。通过交替求解数据子问题和先前的子问题,深入展开的方法可实现良好的性能。但是,在数据子问题中,由于相位畸变,失真引起的设备误差,使用的传感矩阵不适合实际退化过程。在先前的子问题中,设计合适的模型以共同利用空间和光谱先验很重要。在本文中,我们提出了一个残留的退化学习展开框架(RDLUF),该学习弥合了传感矩阵与降解过程之间的差距。此外,混合$ s^2 $变压器是通过在光谱上混合先验和空间来设计的,以增强光谱空间表示能力。最后,将Mix $ S^2 $变压器插入RDLUF会导致端到端可训练的神经网络RDLUF-MIX $ S^2 $。实验结果确定了所提出方法的优越性能。

To acquire a snapshot spectral image, coded aperture snapshot spectral imaging (CASSI) is proposed. A core problem of the CASSI system is to recover the reliable and fine underlying 3D spectral cube from the 2D measurement. By alternately solving a data subproblem and a prior subproblem, deep unfolding methods achieve good performance. However, in the data subproblem, the used sensing matrix is ill-suited for the real degradation process due to the device errors caused by phase aberration, distortion; in the prior subproblem, it is important to design a suitable model to jointly exploit both spatial and spectral priors. In this paper, we propose a Residual Degradation Learning Unfolding Framework (RDLUF), which bridges the gap between the sensing matrix and the degradation process. Moreover, a Mix$S^2$ Transformer is designed via mixing priors across spectral and spatial to strengthen the spectral-spatial representation capability. Finally, plugging the Mix$S^2$ Transformer into the RDLUF leads to an end-to-end trainable neural network RDLUF-Mix$S^2$. Experimental results establish the superior performance of the proposed method over existing ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源