论文标题

考虑到源地点不确定性的碎片流命中率的空间分布的预测

Prediction of spatial distribution of debris-flow hit probability considering the source-location uncertainty

论文作者

Yamanoi, Kazuki, Oishi, Satoru, Kawaike, Kenji

论文摘要

在降雨条件下碎片流的程度和概率的预测可以通过风险量化有助于预防活动。为此,量化针对降雨的碎屑流风险涉及三个组成部分:预测降雨条件下的碎屑流启动位置,设置与碎屑流传输相关的适当物理参数,并使用数值模拟评估受影响的区域。在这项研究中,我们开发了一种逻辑回归方法,其中包括降雨和地形参数,作为解释变量,以量化灾难记录的实际区域中碎屑流启动的可能性。此外,通过评估具有多个参数的仿真结果与使用空中光检测和碎片流量后范围差数据确定的仿真结果之间的一致性,从而引入了客观参数集选择。最后,通过结合这些结果,我们使用Logistic模型生成的启动数据集进行了预测性碎屑传输模拟。因此,使用碎屑流的影响的概率(可以用于风险定量和撤离优化)的空间分布成功地以1-m的分辨率获得。此外,可以根据提出的模拟成本开发实时危害概率预测系统。

Prediction of the extent and probability of debris flow under rainfall conditions can contribute to precautionary activities through risk quantification. To this end, quantifying the debris-flow risk against rainfall involves three components: predicting the debris-flow initiation locations under rainfall conditions, setting appropriate physical parameters related to debris-flow transportation, and evaluating the affected area using numerical simulation. In this study, we developed a logistic regression method that includes rainfall and topographic parameters as explanatory variables to quantify the probability of debris-flow initiation in an actual area with disaster record. Moreover, an objective parameter-set selection was introduced by evaluating the agreement between the simulation results with multiple parameters and the erosion/deposition area determined using the aerial light detection and ranging difference data after debris flow. Finally, by combining these results, we conducted a predictive debris-flow transport simulation using the initiation datasets generated by the logistic model. Therefore, the spatial distribution using the probability of the effects of debris-flow, which can be applied for risk quantification and evacuation optimization, was successfully obtained at 1-m resolution. Furthermore, a real-time hazard probability prediction system could be developed based on the presented simulation cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源