论文标题

划分和对比:通过自适应对比度学习适应无源的域

Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning

论文作者

Zhang, Ziyi, Chen, Weikai, Cheng, Hui, Li, Zhen, Li, Siyuan, Lin, Liang, Li, Guanbin

论文摘要

我们研究了一个实际域的适应任务,称为无源域适应(SFUDA),其中源预言模型被调整为目标域而无需访问源数据。现有的技术主要利用自我监管的伪标签来实现班级的全球一致性[1]或依靠局部结构提取,从而鼓励社区之间的特征一致性[2]。尽管已经取得了令人印象深刻的进展,但两种方法都有自己的缺点 - “全局”方法对嘈杂的标签敏感,而“本地”对应物遭受了来源偏见。在本文中,我们提出了鸿沟和对比度(DAC),这是Sfuda的新范式,努力将两者的良好目的连接起来,同时绕过它们的局限性。基于源模型的预测置信度,DAC将目标数据分为源样本和特定于目标的样本,其中任何一组样品在自适应的对比学习框架下都用量身定制的目标处理。具体而言,由于它们相对干净的标签,将类似源的样品用于学习全球类聚类。在实例级别上利用较嘈杂的目标数据来学习固有的局部结构。我们使用基于内存库的最大平均差异(MMD)损失以减少分布不匹配的情况,进一步将类似源的域与目标特异性样本保持一致。关于Visda,Office-Home和更具挑战性的域内的广泛实验已经验证了DAC的出色性能,而不是当前的最新方法。该代码可在https://github.com/zyezhang/dac.git上找到。

We investigate a practical domain adaptation task, called source-free domain adaptation (SFUDA), where the source-pretrained model is adapted to the target domain without access to the source data. Existing techniques mainly leverage self-supervised pseudo labeling to achieve class-wise global alignment [1] or rely on local structure extraction that encourages feature consistency among neighborhoods [2]. While impressive progress has been made, both lines of methods have their own drawbacks - the "global" approach is sensitive to noisy labels while the "local" counterpart suffers from source bias. In this paper, we present Divide and Contrast (DaC), a new paradigm for SFUDA that strives to connect the good ends of both worlds while bypassing their limitations. Based on the prediction confidence of the source model, DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals under an adaptive contrastive learning framework. Specifically, the source-like samples are utilized for learning global class clustering thanks to their relatively clean labels. The more noisy target-specific data are harnessed at the instance level for learning the intrinsic local structures. We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch. Extensive experiments on VisDA, Office-Home, and the more challenging DomainNet have verified the superior performance of DaC over current state-of-the-art approaches. The code is available at https://github.com/ZyeZhang/DaC.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源