论文标题

OpenGait:重新审视步态识别对更好的实用性

OpenGait: Revisiting Gait Recognition Toward Better Practicality

论文作者

Fan, Chao, Liang, Junhao, Shen, Chuanfu, Hou, Saihui, Huang, Yongzhen, Yu, Shiqi

论文摘要

步态识别是最关键的长距离识别技术之一,并且在研究和行业社区中越来越受欢迎。尽管室内数据集取得了重大进展,但许多证据表明,步态识别技术在野外的表现较差。更重要的是,我们还发现,室内数据集得出的一些结论不能推广到实际应用程序。因此,本文的主要目标是提出一项全面的基准研究,以实现更好的实用性,而不仅仅是以更好的性能。为此,我们首先开发了一个名为OpenGait的灵活,有效的步态识别代码库。基于OpenGait,我们通过重新传达烧蚀性实验,深刻地重新审视了步态识别的最新发展。令人鼓舞的是,我们发现某些先前的锅中的某些不完美的部分以及新的见解。受这些发现的启发,我们开发了一种结构简单,实证强大且实际上可靠的基线模型的步态。在实验上,我们全面地比较了多个公共数据集上的步态识别方法,结果反映出,无论大多数情况下,无论室内或室外情况如何,步态在大多数情况下都能取得明显的强劲性能。代码可在https://github.com/shiqiyu/opengait上找到。

Gait recognition is one of the most critical long-distance identification technologies and increasingly gains popularity in both research and industry communities. Despite the significant progress made in indoor datasets, much evidence shows that gait recognition techniques perform poorly in the wild. More importantly, we also find that some conclusions drawn from indoor datasets cannot be generalized to real applications. Therefore, the primary goal of this paper is to present a comprehensive benchmark study for better practicality rather than only a particular model for better performance. To this end, we first develop a flexible and efficient gait recognition codebase named OpenGait. Based on OpenGait, we deeply revisit the recent development of gait recognition by re-conducting the ablative experiments. Encouragingly,we detect some unperfect parts of certain prior woks, as well as new insights. Inspired by these discoveries, we develop a structurally simple, empirically powerful, and practically robust baseline model, GaitBase. Experimentally, we comprehensively compare GaitBase with many current gait recognition methods on multiple public datasets, and the results reflect that GaitBase achieves significantly strong performance in most cases regardless of indoor or outdoor situations. Code is available at https://github.com/ShiqiYu/OpenGait.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源