论文标题
$ k $ -pell-lucas数字作为两个repdigits的产品
$k$-Pell-Lucas numbers as Product of Two Repdigits
论文作者
论文摘要
对于任何整数$ k \ geq 2 $,让$ \ {q_ {n}^{(k)} \} _ {n \ geq-(k-2)} $表示$ k $ generalized pell-lucas序列,以$ 0,\ dots,2,$ k $ enter为$ k $ k $ k $ k $ k $ kum,该序列是$ k $ generalized pell-lucas序列。在本文中,我们发现所有$ k $ generalized pell-lucas的数字是两个repdigits的产物。这概括了Erduvan和Keskin \ cite {erduvan1}关于pell-lucas数量的结果。
For any integer $k \geq 2$, let $\{Q_{n}^{(k)} \}_{n \geq -(k-2)}$ denote the $k$-generalized Pell-Lucas sequence which starts with $0, \dots ,2,2$($k$ terms) where each next term is the sum of the $k$ preceding terms. In this paper, we find all the $k$-generalized Pell-Lucas numbers that are the product of two repdigits. This generalizes a result of Erduvan and Keskin \cite{Erduvan1} regarding repdigits of Pell-Lucas numbers.