论文标题
关于$ sp(2n)$集成顶点模型的分区功能
On the partition function of the $Sp(2n)$ integrable vertex model
论文作者
论文摘要
我们在方形晶格上研究每个站点的分区功能。我们为该模型建立了一组传输矩阵融合关系。这些功能关系在热力学极限中的解决方案使我们能够根据顶点模型的基本$ sp(2n)$表示每个位点的分区函数。此外,我们还获得了将基本模型与其他表示形式混合的顶点模型的分区函数。
We study the partition function per site of the integrable $Sp(2n)$ vertex model on the square lattice. We establish a set of transfer matrix fusion relations for this model. The solution of these functional relations in the thermodynamic limit allows us to compute the partition function per site of the fundamental $Sp(2n)$ representation of the vertex model. In addition, we also obtain the partition function of vertex models mixing the fundamental with other representations.