论文标题
rffnet:通过随机傅立叶特征的大规模解释内核方法
RFFNet: Large-Scale Interpretable Kernel Methods via Random Fourier Features
论文作者
论文摘要
内核方法为非线性和非参数学习提供了一种灵活且理论上的方法。尽管内存和运行时需求阻碍了它们对大型数据集的适用性,但最近开发了许多低级别内核近似值,例如随机傅立叶功能,以扩展此类内核方法。但是,这些可扩展的方法基于各向同性核的近似值,无法消除无关特征的影响。在这项工作中,我们为自动相关性确定(ARD)内核的家族设计随机傅立叶功能,并引入RFFNET,这是一种新的大规模内核方法,通过一阶随机优化学习内核相关性。我们为该方法的非凸目标函数提供了有效的初始化方案,评估势头限制的RFFNET是否为可变选择提供了明智的规则,并对RFFNET的组件进行了广泛的消融研究。对模拟和现实世界数据的数值验证表明,我们的方法具有较小的内存足迹和运行时,实现了低预测错误,并有效地识别了相关功能,从而导致了更可解释的解决方案。我们为用户提供了一个高效的基于Pytorch的库,该库遵守Scikit-Learn Standard API和代码,以充分复制我们的结果。
Kernel methods provide a flexible and theoretically grounded approach to nonlinear and nonparametric learning. While memory and run-time requirements hinder their applicability to large datasets, many low-rank kernel approximations, such as random Fourier features, were recently developed to scale up such kernel methods. However, these scalable approaches are based on approximations of isotropic kernels, which cannot remove the influence of irrelevant features. In this work, we design random Fourier features for a family of automatic relevance determination (ARD) kernels, and introduce RFFNet, a new large-scale kernel method that learns the kernel relevances' on the fly via first-order stochastic optimization. We present an effective initialization scheme for the method's non-convex objective function, evaluate if hard-thresholding RFFNet's learned relevances yield a sensible rule for variable selection, and perform an extensive ablation study of RFFNet's components. Numerical validation on simulated and real-world data shows that our approach has a small memory footprint and run-time, achieves low prediction error, and effectively identifies relevant features, thus leading to more interpretable solutions. We supply users with an efficient, PyTorch-based library, that adheres to the scikit-learn standard API and code for fully reproducing our results.