论文标题

由离子键和纠缠量身定制的弹性体的组成型模型

A constitutive model for elastomers tailored by ionic bonds and entanglements

论文作者

Wang, Zhongtong, Cai, Hongyi, Silberstein, Meredith N.

论文摘要

在过去的十年或两年中,出现了同时使用多种类型的弱相互作用来增强弹性体的机械性能。这些弱相互作用包括物理纠缠,氢键,金属配位键,动态价值键和离子键。纠缠和离子键合的组合已被最少探索,并且由于聚电解质的宽广应用空间尤其令人兴奋。在这项工作中,开发了一个组成型模型框架来描述具有离子键和纠缠的弹性体的响应。我们制定了一个微机械模型,该模型将链拉伸,离子键滑和纠缠的演变结合在一起。与共价交联的材料相比,与线性聚合物相比,离子键通过实现塑性变形而实现韧性。纠缠密度的演变被视为可以控制弹性体中僵硬,韧性和自我恢复的关键机制。该模型用于在各种载荷历史下与不同分数的离子成分匹配的大量聚电解质。然后,使用材料参数的变化来帮助理解散装聚合物中不同管理机制的相对重要性。我们表明,理论框架可以解释我们的聚电解质的实验单轴拉伸实验结果。该模型可以帮助设计具有高刚度和韧性的更好的材料。我们希望我们的模型可以扩展,以解释其他多种动态键范围的其他聚电解质和其他软材料的机械行为。

Over the past decade or two, the concept has emerged of using multiple types of weak interactions simultaneously to enhance the mechanical properties of elastomers. These weak interactions include physical entanglements, hydrogen bonds, metal-coordination bonds, dynamic covalent bonds, and ionic bonds. The combination of entanglements and ionic bonding has been minimally explored and is particularly exciting because of the broad application space for polyelectrolytes. In this work, a constitutive model framework is developed to describe the response of elastomers with both ionic bonds and entanglements. We formulate a micromechanical model that couples together chain stretching, ionic bond slipping, and entanglement evolution. The ionic bonds provide toughness by enabling plastic deformation in comparison to covalently crosslinked material and add strength compared to a linear polymer. Evolution of the entanglement density is taken as a key mechanism that can govern stiffness, toughness, and self-recovery in elastomers. The model is used to match bulk polyelectrolytes with different fractions of ionic components under a variety of loading histories. The variations in material parameters are then used to help understand the relative importance of different governing mechanisms in the bulk polymers. We show that the theoretical framework can explain our experimental uniaxial tensile experimental results for polyelectrolytes. This model can help to design better material with high stiffness and toughness. We expect that our model can be extended to explain the mechanical behavior of other polyelectrolytes and other soft materials with a wide range of dynamic bonds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源