论文标题
$ k_0^\ ast(1430)$ twist-2发行幅度和$ b_s,d_s \ to k_0^\ ast(1430)$过渡形式。
$K_0^\ast(1430)$ Twist-2 Distribution Amplitude and $B_s,D_s \to K_0^\ast(1430)$ Transition Form Factors
论文作者
论文摘要
基于$ k_0^\ ast(1430)$的情况,将$ s \ bar {q} $或$ q \ bar {s} $的基态视为基础状态,我们研究$ k_0^ast(1430)$ presition-twist-twist分配分布(da)$ n emplipity a n $ n um n em n em n c;背景字段理论。建议提出一个更合理的总和规则公式$ \langleξ^n \ rangle_ {2; k_0^\ ast} $,从而消除了$ \langleξ^0_p \ langle_ {3; k_0^^aST $ in n n n and In n bor的事实,从而消除了所带来的影响。评估了前十美元$ξ$ -Moments的更准确值,$ \langleξ^n \ rangle_ {2; k_0^\ ast}(n = 1,2,\ cdots,10)$。首次建立了$ k_0^\ ast(1430)$ k_0^\ ast(1430)$ k_0^\ ast的新的轻锥谐波振荡器(LCHO)型号。通过拟合$ \langleξ^n \ rangle_ {2; k_0^\ ast}(n = 1,2,\ cdots,10)$的$ \langleξ^n \ rangle_ {2; rangle_ {2; k_0^\ ast} $,通过最小平方方法,确定了$ k_0^\ ast(1430)$ tew twist $ prading Twist da的行为。此外,通过采用轻单QCD总和规则,我们计算$ b_s,d_s \ to k_0^\ ast(1430)$过渡形式的形式和分支的分支分数$ b_s,d_s \ d_s \ to k_0^\ ast(1430)\ ellnν_\ Ell $。相应的数值结果可用于通过将来的相对实验数据组合来提取Cabibbo-Kobayashi-Maskawa矩阵元素。
Based on the scenario that the $K_0^\ast(1430)$ is viewed as the ground state of $s\bar{q}$ or $q\bar{s}$, we study the $K_0^\ast(1430)$ leading-twist distribution amplitude (DA) $ϕ_{2;K_0^\ast}(x,μ)$ with the QCD sum rules in the framework of background field theory. A more reasonable sum rule formula for $ξ$-moments $\langleξ^n\rangle_{2;K_0^\ast}$ is suggested, which eliminates the influence brought by the fact that the sum rule of $\langleξ^0_p\rangle_{3;K_0^\ast}$ cannot be normalized in whole Borel region. More accurate values of the first ten $ξ$-moments, $\langleξ^n\rangle_{2;K_0^\ast} (n = 1,2,\cdots,10)$, are evaluated. A new light-cone harmonic oscillator (LCHO) model for $K_0^\ast(1430)$ leading-twist DA is established for the first times. By fitting the resulted values of $\langleξ^n\rangle_{2;K_0^\ast} (n = 1,2,\cdots,10)$ via the least squares method, the behavior of $K_0^\ast(1430)$ leading-twist DA described with LCHO model is determined. Further, by adopting the light-cone QCD sum rules, we calculate the $B_s,D_s \to K_0^\ast(1430)$ transition form factors and branching fractions of the semileptonic decays $B_s,D_s \to K_0^\ast(1430) \ell ν_\ell$. The corresponding numerical results can be used to extract the Cabibbo-Kobayashi-Maskawa matrix elements by combining the relative experimental data in the future.