论文标题

使用深层生成网络通过亚型平衡改善了HER2肿瘤细分

Improved HER2 Tumor Segmentation with Subtype Balancing using Deep Generative Networks

论文作者

Öttl, Mathias, Mönius, Jana, Rübner, Matthias, Geppert, Carol I., Qiu, Jingna, Wilm, Frauke, Hartmann, Arndt, Beckmann, Matthias W., Fasching, Peter A., Maier, Andreas, Erber, Ramona, Breininger, Katharina

论文摘要

组织病理学图像中的肿瘤分割通常会因其不同组织学亚型和类失衡的组成而变得复杂。过采样的亚型具有较低的患病率特征并不是令人满意的解决方案,因为它最终导致过度拟合。我们建议使用具有语义的深层生成网络创建合成图像,并将亚型平衡的合成图像与原始数据集相结合,以实现更好的分割性能。我们展示了生成对抗网络(GAN),尤其是扩散模型的适用性,以根据亚型调节为HER2染色的组织病理学创建逼真的图像。此外,我们还显示了扩散模型具有修饰亚型的有条件涂料HER2肿瘤区域的能力。将原始数据集与相同数量的扩散生成图像相结合,将肿瘤骰子得分从0.833提高到0.854,几乎使HER2亚型召回的方差减半。这些结果为更可靠的自动HER2分析创造了基础,并且单个HER2亚型之间的性能差异较低。

Tumor segmentation in histopathology images is often complicated by its composition of different histological subtypes and class imbalance. Oversampling subtypes with low prevalence features is not a satisfactory solution since it eventually leads to overfitting. We propose to create synthetic images with semantically-conditioned deep generative networks and to combine subtype-balanced synthetic images with the original dataset to achieve better segmentation performance. We show the suitability of Generative Adversarial Networks (GANs) and especially diffusion models to create realistic images based on subtype-conditioning for the use case of HER2-stained histopathology. Additionally, we show the capability of diffusion models to conditionally inpaint HER2 tumor areas with modified subtypes. Combining the original dataset with the same amount of diffusion-generated images increased the tumor Dice score from 0.833 to 0.854 and almost halved the variance between the HER2 subtype recalls. These results create the basis for more reliable automatic HER2 analysis with lower performance variance between individual HER2 subtypes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源