论文标题
部分可观测时空混沌系统的无模型预测
Thermodynamic uncertainty relation from involutions
论文作者
论文摘要
热力学不确定性关系(TUR)是电流方差作为平均熵产生和平均电流的函数的下限。根据假设的不同,一个人获得了不同版本的TUR。例如,从交易所波动定理中获得了相应的交换tur。另外,我们表明turs是一个非常简单的属性的结果:每个过程$ s $都有一个倒数$ s'= m(s)$,其中$ m $是互动,$ m(m(s))= s $。该属性允许在不使用任何波动定理的情况下推导一般的TUR。作为应用,我们获得了交换tur,不对称的tur,一种不平等的波动反应不平等和熵产生的下限,就其他非平衡指标而言。
The Thermodynamic Uncertainty Relation (TUR) is a lower bound for the variance of a current as a function of the average entropy production and average current. Depending on the assumptions, one obtains different versions of the TUR. For instance, from the exchange fluctuation theorem, one obtains a corresponding exchange TUR. Alternatively, we show that TURs are a consequence of a very simple property: every process $s$ has only one inverse $s'=m(s)$, where $m$ is an involution, $m(m(s))=s$. This property allows the derivation of a general TUR without using any fluctuation theorem. As applications, we obtain the exchange TUR, the asymmetric TUR, a fluctuation-response inequality and lower bounds for the entropy production in terms of other nonequilibrium metrics.