论文标题
关于$ b_ \ mathrm {dr}^+$ - grassmannian for $ \ mathrm {gsp} _ {2n} $的牛顿阶层的非空性
On nonemptiness of Newton strata in the $B_\mathrm{dR}^+$-Grassmannian for $\mathrm{GSp}_{2n}$
论文作者
论文摘要
我们以前的工作为基础,研究了$ b_ \ mathrm {dr}^+$ - Grassmannian的牛顿分层,用于$ \ mathrm {gsp} _ {2n} $。我们的主要结果给出了与Frobenius-Conjugacy类相关的所有非空的牛顿层面的明确分类,该类别满足了牛顿多边形的某些条件。
We build upon our previous work to study the Newton stratification on the $B_\mathrm{dR}^+$-Grassmannian for $\mathrm{GSp}_{2n}$. Our main result gives an explicit classification of all nonempty Newton strata associated to a Frobenius-conjugacy class satisfying certain conditions on the Newton polygon.