论文标题
使用6G细胞基础架构对被动靶标的多静态传感
Multistatic Sensing of Passive Targets Using 6G Cellular Infrastructure
论文作者
论文摘要
使用蜂窝基础设施传感可能是第六代(6G)无线系统的定义特征之一。使用聚类的几何通道模型更好地对以高频波段(上mmwave频段)进行操作的宽带6G通信通道更好地建模。在本文中,我们提出了检测被动目标的方法,并在没有目标的任何帮助的情况下使用通信部署来估算其位置。为此目的开发了一种名为Csisensenet的新型AI架构。我们分析了实际室内部署的分辨率,覆盖范围和位置不确定性。使用所提出的方法,我们表明可以在实用的室内部署方案中以高精度和次级定位误差来感知人尺寸的目标。
Sensing using cellular infrastructure may be one of the defining feature of sixth generation (6G) wireless systems. Wideband 6G communication channels operating at higher frequency bands (upper mmWave bands) are better modeled using clustered geometric channel models. In this paper, we propose methods for detection of passive targets and estimating their position using communication deployment without any assistance from the target. A novel AI architecture called CsiSenseNet is developed for this purpose. We analyze the resolution, coverage and position uncertainty for practical indoor deployments. Using the proposed method, we show that human sized target can be sensed with high accuracy and sub-meter positioning errors in a practical indoor deployment scenario.