论文标题
具有无限l^2 $ norm的数据的广义KDV和一维四阶非线性schrödinger方程的适应性
Well-posedness of generalized KdV and one-dimensional fourth-order derivative nonlinear Schrödinger equations for data with an infinite $L^2$ norm
论文作者
论文摘要
我们研究了广义的KDV和一维四阶非线性schrödinger方程的库奇问题,为此,显示了在调制空间的一定缩放尺度上具有小的粗糙数据的全球溶液的全球拟合度,其中包含一些具有无限$ l^{2} $ Norm的数据。
We study the Cauchy problem for the generalized KdV and one-dimensional fourth-order derivative nonlinear Schrödinger equations, for which the global well-posedness of solutions with the small rough data in certain scaling limit of modulation spaces is shown, which contain some data with infinite $L^{2}$ norm.