论文标题

具有无限l^2 $ norm的数据的广义KDV和一维四阶非线性schrödinger方程的适应性

Well-posedness of generalized KdV and one-dimensional fourth-order derivative nonlinear Schrödinger equations for data with an infinite $L^2$ norm

论文作者

Lu, Yufeng

论文摘要

我们研究了广义的KDV和一维四阶非线性schrödinger方程的库奇问题,为此,显示了在调制空间的一定缩放尺度上具有小的粗糙数据的全球溶液的全球拟合度,其中包含一些具有无限$ l^{2} $ Norm的数据。

We study the Cauchy problem for the generalized KdV and one-dimensional fourth-order derivative nonlinear Schrödinger equations, for which the global well-posedness of solutions with the small rough data in certain scaling limit of modulation spaces is shown, which contain some data with infinite $L^{2}$ norm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源