论文标题
图形的Borsuk-Ulam属性
Borsuk-Ulam property for graphs
论文作者
论文摘要
对于有限连接的图表$γ$和$ g $,$γ$承认免费互动$τ$,我们表征了[γ,g] $ in [γ,g] $的基于borsuk-ulam属性的基于同的$α\ ingonçalves,gonçalves,guaschi和casteluber-laass $ a $ a $ clospopy $ n y n y agnc. $ f(x)= f(τ\ cdot x)$,用于某些$ x \inγ$。这是通过使用离散摩尔斯理论的帮助来帮助的图形组观点。
For finite connected graphs $Γ$ and $G$, with $Γ$ admitting a free involution $τ$, we characterize the based homotopy classes $α\in[Γ,G]$ for which the Borsuk-Ulam property holds in the sense of Gonçalves, Guaschi and Casteluber-Laass, i.e., the homotopy classes $α$ so that each of its representatives $f\inα$ satisfies $f(x) = f(τ\cdot x)$ for some $x\inΓ$. This is attained through a graph-braid-group perspective aided by the use of discrete Morse theory.