论文标题

Kronecker Powers较小的低深度电路

Smaller Low-Depth Circuits for Kronecker Powers

论文作者

Alman, Josh, Guan, Yunfeng, Padaki, Ashwin

论文摘要

我们给出了恒定深度线性电路的新构造,用于计算固定矩阵的Kronecker功率的任何矩阵。标准参数(例如,Kronecker产品的混合产品属性或快速WALSH-HADAMARD变换的概括)表明,任何此类$ n \ times n $矩阵都有一个大小$ o(n^{1.5})$的depth-2电路。对于所有此类矩阵,我们对此有所改进,尤其是对于某些特别感兴趣的矩阵: - 对于任何整数$ q> 1 $和任何矩阵,即固定$ q \ times q $矩阵的kronecker幂,我们构造了一个大小$ o(n^{1.5 -a_q})$的Depth -2电路,其中$ a_q> 0 $是仅在$ q $上的正常数。以前以任何$ q> 2 $而闻名,无绑定的打击尺寸$ o(n^{1.5})$以前是闻名的。 - 对于$ q = 2 $,即,对于任何矩阵,这是固定$ 2 \ times 2 $矩阵的kronecker功率,我们构造了一个大小$ o(n^{1.446})$的Depth-2电路,改善了先前的最佳尺寸$ o(n^{1.493})$ [alman $ [alman $ [alman,2021]。 - 对于WALSH-HADAMARD变换,我们构建了一个尺寸$ o(n^{1.443})$的Depth-2电路,改善了先前的最佳尺寸$ O(N^{1.476})$ [ALMAN,2021]。 - 对于偏差矩阵(集合偏差的通信矩阵,或等效地,线性变换的矩阵,评估所有$ 0/1 $输入的多线性多项式),我们构建了depth-2 size $ o(n^{1.258})$(n^{1.258})$(n^{1.258})$(n^{1.258})$(n^{1.258})$(n^{1.258})$ $ o o($ o o o o o o(n n^n^n^n^2) 2013]。 我们的构造还推广,以改善任何深度$ \ leq o(\ log n)$的标准构造。我们的主要技术工具是一种改进的方法,将任何矩阵的非平凡电路转换为其Kronecker Powers的电路。事实证明,使用先前工作的方法无法实现我们的新界限。

We give new, smaller constructions of constant-depth linear circuits for computing any matrix which is the Kronecker power of a fixed matrix. A standard argument (e.g., the mixed product property of Kronecker products, or a generalization of the Fast Walsh-Hadamard transform) shows that any such $N \times N$ matrix has a depth-2 circuit of size $O(N^{1.5})$. We improve on this for all such matrices, and especially for some such matrices of particular interest: - For any integer $q > 1$ and any matrix which is the Kronecker power of a fixed $q \times q$ matrix, we construct a depth-2 circuit of size $O(N^{1.5 - a_q})$, where $a_q > 0$ is a positive constant depending only on $q$. No bound beating size $O(N^{1.5})$ was previously known for any $q>2$. - For the case $q=2$, i.e., for any matrix which is the Kronecker power of a fixed $2 \times 2$ matrix, we construct a depth-2 circuit of size $O(N^{1.446})$, improving the prior best size $O(N^{1.493})$ [Alman, 2021]. - For the Walsh-Hadamard transform, we construct a depth-2 circuit of size $O(N^{1.443})$, improving the prior best size $O(N^{1.476})$ [Alman, 2021]. - For the disjointness matrix (the communication matrix of set disjointness, or equivalently, the matrix for the linear transform that evaluates a multilinear polynomial on all $0/1$ inputs), we construct a depth-2 circuit of size $O(N^{1.258})$, improving the prior best size $O(N^{1.272})$ [Jukna and Sergeev, 2013]. Our constructions also generalize to improving the standard construction for any depth $\leq O(\log N)$. Our main technical tool is an improved way to convert a nontrivial circuit for any matrix into a circuit for its Kronecker powers. Our new bounds provably could not be achieved using the approaches of prior work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源