论文标题
通过量子点源产生的基于轨道角动量基于轨道动量
Orbital angular momentum based intra- and inter- particle entangled states generated via a quantum dot source
论文作者
论文摘要
具有轨道角动量(OAM)的工程单光子状态是量子信息光子实现的强大工具。确实,由于其无限的性质,OAM适合编码Qudits,允许单个载体传输大量信息。如今,大多数实验平台都使用非线性晶体通过自发参数降低转换过程来生成单个光子,即使这种方法是本质上概率的,从而导致了增加数量的可扩展性问题。半导体量子点(QD)已被用来克服这些限制,能够按需产生纯净和难以区分的单光子状态,尽管直到最近它们才被利用来创建OAM模式。我们的工作采用明亮的QD单光子源来生成一组完整的量子状态,用于使用OAM赋予光子的信息处理。我们首先研究了单光片的绿色绿化膜和极化程度之间的混合粒子内纠缠。我们通过Hong-Ou-Mandel效应可见性证明了这种类型的Qudit状态的准备,该效应可见性,该效应提供了连续的OAM编码光子之间的成对重叠。然后,我们通过利用概率两个基于OAM的纠缠栅极来研究混合粒子间的纠缠。我们的纠缠生成方法的性能得到了评估,以进行高维量子状态层析成像和违反贝尔的不平等现象。我们的结果铺平了使用确定性来源(QD)的方式,以便在高维希尔伯特空间中生成光子量子状态。
Engineering single-photon states endowed with Orbital Angular Momentum (OAM) is a powerful tool for quantum information photonic implementations. Indeed, thanks to its unbounded nature, OAM is suitable to encode qudits allowing a single carrier to transport a large amount of information. Nowadays, most of the experimental platforms use nonlinear crystals to generate single photons through Spontaneous Parametric Down Conversion processes, even if this kind of approach is intrinsically probabilistic leading to scalability issues for increasing number of qudits. Semiconductors Quantum Dots (QDs) have been used to get over these limitations being able to produce on demand pure and indistinguishable single-photon states, although only recently they were exploited to create OAM modes. Our work employs a bright QD single-photon source to generate a complete set of quantum states for information processing with OAM endowed photons. We first study the hybrid intra-particle entanglement between the OAM and the polarization degree of freedom of a single-photon. We certify the preparation of such a type of qudit states by means of the Hong-Ou-Mandel effect visibility which furnishes the pairwise overlap between consecutive OAM-encoded photons. Then, we investigate the hybrid inter-particle entanglement, by exploiting a probabilistic two qudit OAM-based entangling gate. The performances of our entanglement generation approach are assessed performing high dimensional quantum state tomography and violating Bell inequalities. Our results pave the way toward the use of deterministic sources (QDs) for the on demand generation of photonic quantum states in high dimensional Hilbert spaces.