论文标题
通过转移学习迈向全球作物地图
Towards Global Crop Maps with Transfer Learning
论文作者
论文摘要
预计全球人口的持续增加以及气候变化对农作物产量的影响将对粮食部门产生重大影响。在这种情况下,有必要及时,大规模和精确的农作物制定作物,以进行基于证据的决策。朝着这个方向的关键推动力是新的卫星任务,它们可以自由提供高时空分辨率和全球覆盖范围的大型遥感数据。在过去的十年中,由于大地观察的激增,深度学习方法主导了遥感和作物映射文献。然而,深度学习模型需要大量的带注释的数据,这些数据稀缺且难以熟悉。为了解决这个问题,可以使用转移学习方法来利用可用的注释,并为其他地区,农作物类型和多年检查提供农作物映射。在这项工作中,我们使用Sentinel-1 VH时间序列开发并培训了韩国稻米检测的深度学习模型。然后,我们对法国,西班牙以及ii)荷兰大麦检测的帕迪大米进行微调。此外,我们建议对预训练的权重进行修改,以结合额外的输入功能(Sentinel-1 VV)。当在不同区域转移相同的作物类型时,我们的方法表现出了出色的性能,而在不同地区和农作物类型中转移时则表现出令人鼓舞的结果。
The continuous increase in global population and the impact of climate change on crop production are expected to affect the food sector significantly. In this context, there is need for timely, large-scale and precise mapping of crops for evidence-based decision making. A key enabler towards this direction are new satellite missions that freely offer big remote sensing data of high spatio-temporal resolution and global coverage. During the previous decade and because of this surge of big Earth observations, deep learning methods have dominated the remote sensing and crop mapping literature. Nevertheless, deep learning models require large amounts of annotated data that are scarce and hard-to-acquire. To address this problem, transfer learning methods can be used to exploit available annotations and enable crop mapping for other regions, crop types and years of inspection. In this work, we have developed and trained a deep learning model for paddy rice detection in South Korea using Sentinel-1 VH time-series. We then fine-tune the model for i) paddy rice detection in France and Spain and ii) barley detection in the Netherlands. Additionally, we propose a modification in the pre-trained weights in order to incorporate extra input features (Sentinel-1 VV). Our approach shows excellent performance when transferring in different areas for the same crop type and rather promising results when transferring in a different area and crop type.