论文标题

动态流中顶点连接的紧密界限

Tight Bounds for Vertex Connectivity in Dynamic Streams

论文作者

Assadi, Sepehr, Shah, Vihan

论文摘要

我们提出了一种在动态流中的顶点连接问题的流算法,具有(几乎)最佳空间绑定:对于任何$ n $ vertex graph $ g $和任何Integer $ k \ geq 1 $,我们的算法,具有高概率输出的算法,无论$ g $是$ k $ k $ k $ k $ - vertex-contection $ vertex-contection $ n passe $ b n passe $ \ n passectect y passectield $ \ b n of b n) 即使在仅插入流中,我们的上限也与已知的$ω(k n)$下限匹配了此问题的下限 - 我们将其扩展到本文中的多通算法 - 并缩小了我们对动态与插入流的理解中的最后剩余差距之一。我们的结果是通过对Guha,McGregor和Tench [Pods 2015]的先前最佳动态流算法的新颖分析而获得的,后者获得了此问题的$ \ widetilde {o}(k^2 N)$ space算法。这还提供了一种独立于模型的算法,用于计算$ k $ - vertex-connectitive的“证书”作为$ O(k^2 \ log {n})$跨越森林的结合,每个$ spanning Forests $(n/k)$ Vertices的随机子集,这可能是独立的。

We present a streaming algorithm for the vertex connectivity problem in dynamic streams with a (nearly) optimal space bound: for any $n$-vertex graph $G$ and any integer $k \geq 1$, our algorithm with high probability outputs whether or not $G$ is $k$-vertex-connected in a single pass using $\widetilde{O}(k n)$ space. Our upper bound matches the known $Ω(k n)$ lower bound for this problem even in insertion-only streams -- which we extend to multi-pass algorithms in this paper -- and closes one of the last remaining gaps in our understanding of dynamic versus insertion-only streams. Our result is obtained via a novel analysis of the previous best dynamic streaming algorithm of Guha, McGregor, and Tench [PODS 2015] who obtained an $\widetilde{O}(k^2 n)$ space algorithm for this problem. This also gives a model-independent algorithm for computing a "certificate" of $k$-vertex-connectivity as a union of $O(k^2\log{n})$ spanning forests, each on a random subset of $O(n/k)$ vertices, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源