论文标题

NBIIG:一种用于表报告的神经BI Insights生成系统

nBIIG: A Neural BI Insights Generation System for Table Reporting

论文作者

Perlitz, Yotam, Sheinwald, Dafna, Slonim, Noam, Shmueli-Scheuer, Michal

论文摘要

我们提出了NBIIG,这是一种神经商业智能(BI)洞察力生成系统。鉴于一个表,我们的系统应用了各种分析来创建相应的RDF表示,然后使用神经模型从这些表示形式中产生流利的文本见解。分析师可以通过人类范围的范式使用生成的见解,以增强创建引人注目的表报告的任务。从多个BI域策划的大型和仔细蒸馏的数据,对潜在的生成神经模型进行了训练。因此,该系统可以对开放域表产生忠实而流利的见解,从而使其实用且有用。

We present nBIIG, a neural Business Intelligence (BI) Insights Generation system. Given a table, our system applies various analyses to create corresponding RDF representations, and then uses a neural model to generate fluent textual insights out of these representations. The generated insights can be used by an analyst, via a human-in-the-loop paradigm, to enhance the task of creating compelling table reports. The underlying generative neural model is trained over large and carefully distilled data, curated from multiple BI domains. Thus, the system can generate faithful and fluent insights over open-domain tables, making it practical and useful.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源