论文标题

各种环的整数复杂性概括

Integer Complexity Generalizations in Various Rings

论文作者

Kumar, Aarya, Peng, Siyu, Tran, Vincent

论文摘要

在本文中,我们研究了整数的Mahler-Popkens复杂性的概括。具体而言,我们将统一的根源,多项式概括为$ k $ th,而整数$ m $。在环形环中,我们建立了整数复杂性的上限和下限,研究了使用循环组合多项式的统一根的复杂性,并引入了一个“最小值”的概念。在多项式上的自然元素中,我们建立了复杂性的尺寸,并建立了一个琐碎的上限。 “弹性”和“修改的复杂性。”,希望改善对最复杂的元素mod $ m $复杂性的上限,我们还使用图形来可视化这些有限环中的复杂性。

In this paper, we investigate generalizations of the Mahler-Popkens complexity of integers. Specifically, we generalize to $k$-th roots of unity, polynomials over the naturals, and the integers mod $m$. In cyclotomic rings, we establish upper and lower bounds for integer complexity, investigate the complexity of roots of unity using cyclotomic polynomials, and introduce a concept of "minimality.'' In polynomials over the naturals, we establish bounds on the sizes of complexity classes and establish a trivial but useful upper bound. In the integers mod $m$, we introduce the concepts of "inefficiency'', "resilience'', and "modified complexity.'' In hopes of improving the upper bound on the complexity of the most complex element mod $m$, we also use graphs to visualize complexity in these finite rings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源