论文标题
量子深梦:一种新颖的量子电路设计方法
Quantum Deep Dreaming: A Novel Approach for Quantum Circuit Design
论文作者
论文摘要
量子计算社区当前面临的挑战之一是量子电路的设计,这些电路可以在近期量子计算机上有效运行,称为量子编译问题。算法如变异量子本素(VQE),量子近似优化算法(QAOA)和量子体系结构搜索(QAS)已被证明可以生成或找到最佳的近期量子量电路。但是,这些方法在计算上是昂贵的,几乎没有对电路设计过程的了解。在本文中,我们提出了Quantum Deep Dreaming(QDD),该算法为指定目标(例如基态制备)生成最佳的量子电路体系结构,同时提供对电路设计过程的见解。在QDD中,我们首先训练神经网络以预测量子电路的某些特性(例如VQE能量)。然后,我们在训练有素的网络上采用深层梦想技术,以迭代更新初始电路以实现目标属性值(例如基态VQE能源)。重要的是,这种迭代更新使我们能够分析梦想过程的中间电路,并获得对网络在梦中修改的电路功能的见解。我们证明QDD成功生成或“梦想”的六个Qubits的电路接近地面能量(横向场Ising Model VQE Energy),而梦境分析产生了电路设计的见解。 QDD旨在优化具有任何目标特性的电路,并且可以应用于量子化学内外的电路设计问题。因此,QDD为未来发现优化的量子电路的基础奠定了基础,并提高了自动化量子算法设计的解释性。
One of the challenges currently facing the quantum computing community is the design of quantum circuits which can efficiently run on near-term quantum computers, known as the quantum compiling problem. Algorithms such as the Variational Quantum Eigensolver (VQE), Quantum Approximate Optimization Algorithm (QAOA), and Quantum Architecture Search (QAS) have been shown to generate or find optimal near-term quantum circuits. However, these methods are computationally expensive and yield little insight into the circuit design process. In this paper, we propose Quantum Deep Dreaming (QDD), an algorithm that generates optimal quantum circuit architectures for specified objectives, such as ground state preparation, while providing insight into the circuit design process. In QDD, we first train a neural network to predict some property of a quantum circuit (such as VQE energy). Then, we employ the Deep Dreaming technique on the trained network to iteratively update an initial circuit to achieve a target property value (such as ground state VQE energy). Importantly, this iterative updating allows us to analyze the intermediate circuits of the dreaming process and gain insights into the circuit features that the network is modifying during dreaming. We demonstrate that QDD successfully generates, or 'dreams', circuits of six qubits close to ground state energy (Transverse Field Ising Model VQE energy) and that dreaming analysis yields circuit design insights. QDD is designed to optimize circuits with any target property and can be applied to circuit design problems both within and outside of quantum chemistry. Hence, QDD lays the foundation for the future discovery of optimized quantum circuits and for increased interpretability of automated quantum algorithm design.