论文标题

RRSR:基于相互参考的图像超分辨率,具有渐进特征对齐和选择

RRSR:Reciprocal Reference-based Image Super-Resolution with Progressive Feature Alignment and Selection

论文作者

Zhang, Lin, Li, Xin, He, Dongliang, Li, Fu, Wang, Yili, Zhang, Zhaoxiang

论文摘要

基于参考的图像超分辨率(REFSR)是一个有希望的SR分支,在克服单图超级分辨率的局限性方面显示出很大的潜力。虽然先前的最先进的REFSR方法主要集中于提高参考特征传递的疗效和鲁棒性,但通常忽略了重建良好的SR映像应在其引用AS时为其类似的LR图像启用更好的SR重建。因此,在这项工作中,我们提出了一个相互的学习框架,该框架可以适当利用这样的事实来加强REFSR网络的学习。此外,我们故意设计了一个渐进的功能一致性和选择模块,以进一步改进REFSR任务。新提出的模块在多尺度特征空间上对齐参考输入图像,并以渐进的方式执行参考感知特征选择,因此可以将更精确的参考特征传递到输入功能中,并增强了网络功能。我们的相互学习范式是模型 - 不合Snostic,可以应用于任意REFSR模型。我们从经验上表明,通过我们的相互学习范式可以一致改进多种最新的最新涉及REFSR模型。此外,我们提出的模型以及相互学习策略将新的最先进的表演在多个基准测试中设置了。

Reference-based image super-resolution (RefSR) is a promising SR branch and has shown great potential in overcoming the limitations of single image super-resolution. While previous state-of-the-art RefSR methods mainly focus on improving the efficacy and robustness of reference feature transfer, it is generally overlooked that a well reconstructed SR image should enable better SR reconstruction for its similar LR images when it is referred to as. Therefore, in this work, we propose a reciprocal learning framework that can appropriately leverage such a fact to reinforce the learning of a RefSR network. Besides, we deliberately design a progressive feature alignment and selection module for further improving the RefSR task. The newly proposed module aligns reference-input images at multi-scale feature spaces and performs reference-aware feature selection in a progressive manner, thus more precise reference features can be transferred into the input features and the network capability is enhanced. Our reciprocal learning paradigm is model-agnostic and it can be applied to arbitrary RefSR models. We empirically show that multiple recent state-of-the-art RefSR models can be consistently improved with our reciprocal learning paradigm. Furthermore, our proposed model together with the reciprocal learning strategy sets new state-of-the-art performances on multiple benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源