论文标题
耦合KDV-ODE系统的单数扰动分析
Singular perturbation analysis for a coupled KdV-ODE system
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Asymptotic stability is with no doubts an essential property to be studied for any system. This analysis often becomes very difficult for coupled systems and even harder when different timescales appear. The singular perturbation method allows to decouple a full system into what are called the reduced order system and the boundary layer system, to get simpler stability conditions for the original system. In the infinite-dimensional setting, we do not have a general result making sure this strategy works. This papers is devoted to this analysis for some systems coupling the Korteweg-the Vries equation and an ordinary differential equation with different timescales. More precisely, We obtain stability results and Tikhonov-type theorems.