论文标题

部分可观测时空混沌系统的无模型预测

Peak sections and Bergman kernels on Kähler manifolds with complex hyperbolic cusps

论文作者

Zhou, Shengxuan

论文摘要

通过重新访问天的峰值部分方法,我们获得了伯格曼核在kähler歧管上具有复杂双曲线尖齿的本地化原理,这是对auvray-ma-marinescu的本地化的概括,结果伯格曼核在刺穿的riemann riemann表面上的伯格曼内核[auvray-ma-ma-marinecu [auvray-ma-marinecu,数学。 Ann。,2021]。然后,当复杂双曲线尖端上的度量是Kähler-Einstein公制时,或者当歧管是复杂球的商时,我们给出了一些进一步的估计。通过将我们的方法直接应用于庞加莱型尖端,我们还获得了部分定位结果。

By revisiting Tian's peak section method, we obtain a localization principle of the Bergman kernels on Kähler manifolds with complex hyperbolic cusps, which is a generalization of Auvray-Ma-Marinescu's localization result Bergman kernels on punctured Riemann surfaces [Auvray-Ma-Marinescu, Math. Ann., 2021]. Then we give some further estimates when the metric on the complex hyperbolic cusp is a Kähler-Einstein metric or when the manifold is a quotient of the complex ball. By applying our method directly to Poincaré type cusps, we also get a partial localization result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源