论文标题
产生对肿瘤空间蛋白质组的反事实解释,以发现增强免疫浸润的有效策略
Generating counterfactual explanations of tumor spatial proteomes to discover effective strategies for enhancing immune infiltration
论文作者
论文摘要
肿瘤微环境(TME)由于其免疫组成而显着影响癌症的预后。虽然改变包括免疫疗法在内的免疫成分的疗法对治疗血液癌的令人兴奋的结果,但它们对免疫学冷的实体瘤的有效性较小。空间上的幻象技术以前所未有的分子细节捕获了TME的空间组织,从而揭示了免疫细胞定位与分子信号之间的关系。在这里,我们将T细胞浸润预测作为一个自我监督的机器学习问题,并制定了反事实优化策略,该策略利用大规模的空间仪剖面概述患者肿瘤以设计可提高T细胞浸润的肿瘤扰动。卷积神经网络预测基于成像质量细胞仪提供的TME信号分子的T细胞分布。然后,基于梯度的反事实生成计算扰动预测将增强T细胞丰度。我们将框架应用于黑色素瘤,结直肠癌肝转移和乳腺肿瘤数据,发现预测的组合扰动可支持数十万名患者的T细胞浸润。这项工作提出了使用空间OMICS数据对基于反事实的预测和设计癌症治疗剂的范式。
The tumor microenvironment (TME) significantly impacts cancer prognosis due to its immune composition. While therapies for altering the immune composition, including immunotherapies, have shown exciting results for treating hematological cancers, they are less effective for immunologically-cold, solid tumors. Spatial omics technologies capture the spatial organization of the TME with unprecedented molecular detail, revealing the relationship between immune cell localization and molecular signals. Here, we formulate T-cell infiltration prediction as a self-supervised machine learning problem and develop a counterfactual optimization strategy that leverages large scale spatial omics profiles of patient tumors to design tumor perturbations predicted to boost T-cell infiltration. A convolutional neural network predicts T-cell distribution based on signaling molecules in the TME provided by imaging mass cytometry. Gradient-based counterfactual generation, then, computes perturbations predicted to boost T-cell abundance. We apply our framework to melanoma, colorectal cancer liver metastases, and breast tumor data, discovering combinatorial perturbations predicted to support T-cell infiltration across tens to hundreds of patients. This work presents a paradigm for counterfactual-based prediction and design of cancer therapeutics using spatial omics data.