论文标题

南大洋中异质生物地球化学ARGO数据的功能回归模型

A functional regression model for heterogeneous BioGeoChemical Argo data in the Southern Ocean

论文作者

Korte-Stapff, Moritz, Yarger, Drew, Stoev, Stilian, Hsing, Tailen

论文摘要

利用可用的环境测量可以帮助我们了解复杂的过程。一个例子是Argo生物地球化学数据,旨在收集海洋中不同深度处的氧,硝酸盐,pH和其他变量的测量。我们专注于南大洋的氧气数据,该数据对海洋生物学和地球循环具有影响。对此类数据的系统监视直到最近才开始建立,数据很少。相反,温度和盐度的Argo测量更丰富。在这项工作中,我们介绍并估算了一个功能回归模型,该模型描述了ARGO数据涵盖的所有深度的氧气,温度和盐度数据的依赖性。我们的模型阐明了温度,盐度和氧气的关节分布的重要方面。由于在南大洋中建立不同空间区域的前沿,我们使用混合物组件增强了该功能回归模型。通过对混合物组件和数据本身中的空间依赖性进行建模,我们可以在网格上提供预测并改善前部的位置估计值。我们的方法可扩展到ARGO数据的大小,我们证明了它在交叉验证方面的成功和对模型的全面解释。

Leveraging available measurements of our environment can help us understand complex processes. One example is Argo Biogeochemical data, which aims to collect measurements of oxygen, nitrate, pH, and other variables at varying depths in the ocean. We focus on the oxygen data in the Southern Ocean, which has implications for ocean biology and the Earth's carbon cycle. Systematic monitoring of such data has only recently begun to be established, and the data is sparse. In contrast, Argo measurements of temperature and salinity are much more abundant. In this work, we introduce and estimate a functional regression model describing dependence in oxygen, temperature, and salinity data at all depths covered by the Argo data simultaneously. Our model elucidates important aspects of the joint distribution of temperature, salinity, and oxygen. Due to fronts that establish distinct spatial zones in the Southern Ocean, we augment this functional regression model with a mixture component. By modelling spatial dependence in the mixture component and in the data itself, we provide predictions onto a grid and improve location estimates of fronts. Our approach is scalable to the size of the Argo data, and we demonstrate its success in cross-validation and a comprehensive interpretation of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源