论文标题
非超级近磨砂几何形状
Non-extremal near-horizon geometries
论文作者
论文摘要
当高斯无效坐标适应杀伤范围时,近马的限制是由协调重新定义的,然后通过将调节器参数$ \ varepsilon $缩小为小,作为缩小到水平高度表情的一种方式。在这种坐标环境中,众所周知,在近途径限制中非超级杀戮地平线的度量是不同的,并且为了将不同的术语设置为零是一种常见的实践。尽管公制是不同的,但我们显示了一类杀戮视野,表明真空爱因斯坦的方程可以分为不同的部分和有限的部分,从而导致了一个定义明确的爱因斯坦方程,人们需要求解。我们将结果扩展到爱因斯坦重力,最小化与无质量标量场。我们还讨论了爱因斯坦重力耦合到麦克斯韦场的情况,在这种情况下,如果麦克斯韦电势仅在地平线空间横截面的方向上具有非变化的成分,则可分离性。
When Gaussian null coordinates are adapted to a Killing horizon, the near-horizon limit is defined by a coordinate rescaling and then by taking the regulator parameter $\varepsilon$ to be small, as a way of zooming into the horizon hypersurface. In this coordinate setting, it is known that the metric of a non-extremal Killing horizon in the near-horizon limit is divergent, and it has been a common practice to impose extremality in order to set the divergent term to zero. Although the metric is divergent, we show for a class of Killing horizons that the vacuum Einstein's equations can be separated into a divergent and a finite part, leading to a well-defined minimal set of Einstein's equations one needs to solve. We extend the result to Einstein gravity minimally coupled to a massless scalar field. We also discuss the case of Einstein gravity coupled to a Maxwell field, in which case the separability holds if the Maxwell potential has non-vanishing components only in the directions of the horizon spatial cross section.