论文标题

检索大型语言生成语言模型的增强

Retrieval augmentation of large language models for lay language generation

论文作者

Guo, Yue, Qiu, Wei, Leroy, Gondy, Wang, Sheng, Cohen, Trevor

论文摘要

最近的外行语言生成系统使用了在平行语料库中训练的变压器模型,以提高健康信息可访问性。但是,这些模型的适用性受到可用语料库的规模和局部广度的限制。我们介绍用于外行语言生成的细胞,最大的(63k对)和最广泛的(12个期刊)平行语料库。摘要和相应的外行语言摘要由域专家编写,确保我们的数据集质量。此外,对专家著名语言摘要的定性评估揭示了背景解释是提高可访问性的关键策略。这种解释对于神经模型来说是一项挑战,因为它通过添加源缺乏的内容而超越了简化。我们从单元格中得出两个专门的配对Corpora,以解决外行语言生成中的关键挑战:生成背景说明并简化原始摘要。我们采用检索型模型作为背景解释生成的任务的直观,并在保持事实正确性的同时显示出质量和简单性的改进。综上所述,这项工作介绍了对外行语言产生的背景解释的首次全面研究,为将科学知识传播给更广泛的受众铺平了道路。单元格可在以下网络上公开获取:https://github.com/linguisticanomalies/pls_retrieval。

Recent lay language generation systems have used Transformer models trained on a parallel corpus to increase health information accessibility. However, the applicability of these models is constrained by the limited size and topical breadth of available corpora. We introduce CELLS, the largest (63k pairs) and broadest-ranging (12 journals) parallel corpus for lay language generation. The abstract and the corresponding lay language summary are written by domain experts, assuring the quality of our dataset. Furthermore, qualitative evaluation of expert-authored plain language summaries has revealed background explanation as a key strategy to increase accessibility. Such explanation is challenging for neural models to generate because it goes beyond simplification by adding content absent from the source. We derive two specialized paired corpora from CELLS to address key challenges in lay language generation: generating background explanations and simplifying the original abstract. We adopt retrieval-augmented models as an intuitive fit for the task of background explanation generation, and show improvements in summary quality and simplicity while maintaining factual correctness. Taken together, this work presents the first comprehensive study of background explanation for lay language generation, paving the path for disseminating scientific knowledge to a broader audience. CELLS is publicly available at: https://github.com/LinguisticAnomalies/pls_retrieval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源