论文标题

在定期驱动的许多车身系统和古典和量子系统的未来方向上,对不可逆过渡的可逆转变的视角

Perspective on Reversible to Irreversible Transitions in Periodic Driven Many Body Systems and Future Directions For Classical and Quantum Systems

论文作者

Reichhardt, C., Regev, Ido, Dahmen, K., Okuma, S., Reichhardt, C. J. O.

论文摘要

不可逆的(R-IR)过渡可逆,在许多周期性驱动的集体相互作用的系统中出现,在一定数量的驾驶循环后,将粒子轨迹重复或与混乱运动保持不可逆的可逆状态。首先对R-IR转变进行系统的研究,以定期进行稀释的胶体,并出现在多种软物质系统中,包括无定形固体,晶体,II型超导体中的涡流和磁纹理。在某些情况下,可逆的过渡是一种吸收的相变,在组织时间尺度上具有关键的差异。 R-IR系统可以存储多个记忆并展示返回点存储器。我们概述了R-IR的过渡,包括该领域的最新进展,并讨论如何将R-IR转换的一般框架应用于更广泛的定期驱动的非元素系统,包括软凝和硬凝结物质系统,天体物理学,生物系统,生物系统和社交系统。一些可能的候选系统是相称的稳定状态,表现出滞后或雪崩的系统以及形成非平衡模式状态。可定期驾驶可以应用于硬凝结物质系统,以查看金属 - 绝缘体过渡,半导体,电子玻璃,电子差异,冷原子系统或Bose-Einstein冷凝物中的R-IR过渡。还可以在发生同步或相位锁定的动态系统中检查R-IR转换。我们讨论复杂周期性驾驶的使用,例如更改驱动方向或多个频率作为保留复杂多个记忆的方法。最后,我们描述了经典和量子时间晶体的特征,这些特征可能暗示了这些系统中R-IR转变的发生。

Reversible to irreversible (R-IR) transitions arise in numerous periodically driven collectively interacting systems that, after a certain number of driving cycles, organize into a reversible state where the particle trajectories repeat, or remain irreversible with chaotic motion. R-IR transitions were first systematically studied for periodically sheared dilute colloids, and appear in a wide variety of both soft and hard matter systems, including amorphous solids, crystals, vortices in type-II superconductors, and magnetic textures. In some cases, the reversible transition is an absorbing phase transition with a critical divergence in the organization time scale. R-IR systems can store multiple memories and exhibit return point memory. We give an overview of R-IR transitions including recent advances in the field, and discuss how the general framework of R-IR transitions could be applied to a much broader class of periodically driven nonequilibrium systems, including soft and hard condensed matter systems, astrophysics, biological systems, and social systems. Some likely candidate systems are commensurate-incommensurate states, systems exhibiting hysteresis or avalanches, and nonequilibrium pattern forming states. Periodic driving could be applied to hard condensed matter systems to see if R-IR transitions occur in metal-insulator transitions, semiconductors, electron glasses, electron nematics, cold atom systems, or Bose-Einstein condensates. R-IR transitions could also be examined in dynamical systems where synchronization or phase locking occurs. We discuss the use of complex periodic driving such as changing drive directions or multiple frequencies as a method to retain complex multiple memories. Finally, we describe features of classical and quantum time crystals that could suggest the occurrence of R-IR transitions in these systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源