论文标题
具有标量和矢量电位的Klein-Gordon振荡器,拓扑充电Ellis-Bronnikov型虫洞
Klein-Gordon Oscillator with Scalar and Vector Potentials in Topologically Charged Ellis-Bronnikov type Wormhole
论文作者
论文摘要
在这项工作中,我们在拓扑充电的Ellis-Bronnikov虫洞时空背景中研究具有相同标量和矢量电势的Klein-Gordon振荡器。通过转换$ m^{2} \ rightarrow(m+s(x))^{2} $,通过转换质量质量研究相对论振荡器场的行为,并通过在波方程中的最小替换来进行矢量电位。简化了三种不同类型的电势的Klein-Gordon振荡器方程,例如线性限制,库仑型和康奈尔型电势,我们达到了一个二阶微分方程,称为Biconfluent Heun(BCH)方程以及相应的Heun Heun Heun Heun Heun功能。最后,我们通过Frobenius方法将波方程作为围绕原点的功率序列扩展求解,并获得能级和波函数。
In this work, we study the Klein-Gordon oscillator with equal scalar and vector potentials in a topologically charged Ellis-Bronnikov wormhole space-time background. The behaviour of a relativistic oscillator field is studied with a position-dependent mass via transformation $M^{2}\rightarrow (M+S(x))^{2}$ and vector potential through a minimal substitution in the wave equation. Simplifying the Klein-Gordon oscillator equation for three different types of potential, such as linear confining, Coulomb-type, and Cornell-type potential and we arrive at a second-order differential equation known as the biconfluent Heun (BCH) equation and the corresponding confluent Heun function. Finally, we solve the wave equation by the Frobenius method as a power series expansion around the origin and obtain the energy levels and the wave function.