论文标题
组DETR V2:具有编码器训练的强对象检测器预训练
Group DETR v2: Strong Object Detector with Encoder-Decoder Pretraining
论文作者
论文摘要
我们提出了一个强大的对象检测器,并进行了编码器预处理和填充。我们的方法称为组DETR V2,建立在视觉变压器编码器vit-huge〜 \ cite {dosovitskiy2020image}的基础上,这是一种detr variant dino〜 \ cite {zhang20222dino},以及有效的detr训练方法组detr〜\ cite dretr〜 \ cite {chen20222group}。训练过程包括在Imagenet-1K上进行自我监督的预处理和填充编码器,在Object365上预处理检测器,并最终在可可上进行了固定。 Group detr v2实现$ \ textbf {64.5} $ coco test-dev上的地图,并在可可排行榜上建立一个新的sota
We present a strong object detector with encoder-decoder pretraining and finetuning. Our method, called Group DETR v2, is built upon a vision transformer encoder ViT-Huge~\cite{dosovitskiy2020image}, a DETR variant DINO~\cite{zhang2022dino}, and an efficient DETR training method Group DETR~\cite{chen2022group}. The training process consists of self-supervised pretraining and finetuning a ViT-Huge encoder on ImageNet-1K, pretraining the detector on Object365, and finally finetuning it on COCO. Group DETR v2 achieves $\textbf{64.5}$ mAP on COCO test-dev, and establishes a new SoTA on the COCO leaderboard https://paperswithcode.com/sota/object-detection-on-coco