论文标题

组DETR V2:具有编码器训练的强对象检测器预训练

Group DETR v2: Strong Object Detector with Encoder-Decoder Pretraining

论文作者

Chen, Qiang, Wang, Jian, Han, Chuchu, Zhang, Shan, Li, Zexian, Chen, Xiaokang, Chen, Jiahui, Wang, Xiaodi, Han, Shuming, Zhang, Gang, Feng, Haocheng, Yao, Kun, Han, Junyu, Ding, Errui, Wang, Jingdong

论文摘要

我们提出了一个强大的对象检测器,并进行了编码器预处理和填充。我们的方法称为组DETR V2,建立在视觉变压器编码器vit-huge〜 \ cite {dosovitskiy2020image}的基础上,这是一种detr variant dino〜 \ cite {zhang20222dino},以及有效的detr训练方法组detr〜\ cite dretr〜 \ cite {chen20222group}。训练过程包括在Imagenet-1K上进行自我监督的预处理和填充编码器,在Object365上预处理检测器,并最终在可可上进行了固定。 Group detr v2实现$ \ textbf {64.5} $ coco test-dev上的地图,并在可可排行榜上建立一个新的sota

We present a strong object detector with encoder-decoder pretraining and finetuning. Our method, called Group DETR v2, is built upon a vision transformer encoder ViT-Huge~\cite{dosovitskiy2020image}, a DETR variant DINO~\cite{zhang2022dino}, and an efficient DETR training method Group DETR~\cite{chen2022group}. The training process consists of self-supervised pretraining and finetuning a ViT-Huge encoder on ImageNet-1K, pretraining the detector on Object365, and finally finetuning it on COCO. Group DETR v2 achieves $\textbf{64.5}$ mAP on COCO test-dev, and establishes a new SoTA on the COCO leaderboard https://paperswithcode.com/sota/object-detection-on-coco

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源