论文标题
非双曲线孔的瑟斯顿地图的增长率不平等
The growth rate inequality for Thurston maps with non hyperbolic orbifolds
论文作者
论文摘要
令$ f:s^2 \ to s^2 $为$ d $,$ | d |> 1 $的连续地图,让$ n_nf $表示$ f^n $的固定点的数量。我们表明,如果$ f $是带有非双曲线Orbifold的Thurston地图,那么增长率不平等$ \ limsup \ frac {1} {n} {n} \ log n_nf \ geq \ geq \ geq \ log | d | $ holds的$ f $或$ f $或$ f $具有确切的两个关键点,这些点具有确切的固定和完全开枪。
Let $f: S^2 \to S^2$ be a continuous map of degree $d$, $|d|>1$, and let $N_nf$ denote the number of fixed points of $f^n$. We show that if $f$ is a Thurston map with non hyperbolic orbifold, then either the growth rate inequality $\limsup \frac{1}{n} \log N_nf\geq \log |d|$ holds for $f$ or $f$ has exactly two critical points which are fixed and totally invariant.