论文标题

知识图嵌入:从表示空间的角度来调查

Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces

论文作者

Cao, Jiahang, Fang, Jinyuan, Meng, Zaiqiao, Liang, Shangsong

论文摘要

知识图嵌入(KGE)是一种越来越流行的技术,旨在将知识图的实体和关系代表到低维语义空间中,以用于广泛的应用,例如链接预测,知识推理和知识完成。在本文中,我们根据表示空间对现有的KGE技术进行系统的审查。特别是,我们建立一个细粒度的分类,以根据表示空间的三个数学观点对模型进行分类:(1)代数透视图,(2)几何透视图,以及(3)分析观点。在潜入KGE模型及其数学属性之前,我们介绍了基本数学空间的严格定义。我们进一步讨论了这三个类别的不同KGE方法,并总结了空间优势在不同嵌入需求方面的工作方式。通过整理下游任务的实验结果,我们还探讨了不同场景及其背后原因的数学空间的优势。我们进一步从表示空间的角度陈述了一些有希望的研究方向,我们希望通过这种研究来激发研究人员设计其KGE模型以及相关应用,并更多地考虑其数学空间属性。

Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源