论文标题

在感知移动网络中使用CSI比的上行链路传感

Uplink Sensing Using CSI Ratio in Perceptive Mobile Networks

论文作者

Ni, Zhitong, Zhang, J. Andrew, Wu, Kai, Liu, Ren Ping

论文摘要

高线链路传感移动网络(PMN),它消耗了上行链路通信信号来感知基站周围的环境,面临着挑战时钟异步问题的挑战性问题,以及在发射器和接收器之间的视线(LOS)路径的要求。通道状态信息(CSI)比率已应用于解决这些问题,但是,对CSI比率的当前研究仅限于单个动态路径中的多普勒估计。本文提出了一个高级参数估计方案,该方案可以提取多个动态参数,包括多普勒频率,到达角度(AOA)和延迟,并在通信上行链路通道中完成,并完成多个移动目标的定位。我们的方案基于CSI比的多元素泰勒级数,该比率将传感参数的非线性函数转换为线性形式,并启用传统传感算法的应用。使用截短的泰勒系列,我们开发了新型的多种信号分类网格搜索算法来估计多普勒频率和AOA,并使用最不平等的方法来获得延迟。提供了实验和仿真结果,表明我们所提出的方案可以在不需要LOS路径的情况下实现良好的感测和多个动态路径的性能。

Uplink sensing in perceptive mobile networks (PMNs), which uses uplink communication signals for sensing the environment around a base station, faces challenging issues of clock asynchronism and the requirement of a line-of-sight (LOS) path between transmitters and receivers. The channel state information (CSI) ratio has been applied to resolve these issues, however, current research on the CSI ratio is limited to Doppler estimation in a single dynamic path. This paper proposes an advanced parameter estimation scheme that can extract multiple dynamic parameters, including Doppler frequency, angle-of-arrival (AoA), and delay, in a communication uplink channel and completes the localization of multiple moving targets. Our scheme is based on the multi-element Taylor series of the CSI ratio that converts a nonlinear function of sensing parameters to linear forms and enables the applications of traditional sensing algorithms. Using the truncated Taylor series, we develop novel multiple-signal-classification grid searching algorithms for estimating Doppler frequencies and AoAs and use the least-square method to obtain delays. Both experimental and simulation results are provided, demonstrating that our proposed scheme can achieve good performances for sensing both single and multiple dynamic paths, without requiring the presence of a LOS path.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源