论文标题
在保守的粘性山峰上,改进的Camassa-Holm方程
On conservative sticky peakons to the modified Camassa-Holm equation
论文作者
论文摘要
我们使用一种粘性粒子方法来显示(能量)保守的粘性$ n $ -Peakon解决方案,用于改进的Camassa-Holm方程。为保守的$ n $ peakon解决方案的独特性提供了分散正规化作为选择原则。色散极限避免了Pexson之间的碰撞,数值结果表明,分散极限正是粘性的山峰。最后,当允许山峰的分裂时,我们举例说明保守解决方案的非唯一性。
We use a sticky particle method to show global existence of (energy) conservative sticky $N$-peakon solutions to the modified Camassa-Holm equation. A dispersion regularization is provided as a selection principle for the uniqueness of conservative $N$-peakon solutions. The dispersion limit avoids the collision between peakons, and numerical results show that the dispersion limit is exactly the sticky peakons. At last, when the splitting of peakons is allowed, we give an example to show the non-uniqueness of conservative solutions.