论文标题

在保守的粘性山峰上,改进的Camassa-Holm方程

On conservative sticky peakons to the modified Camassa-Holm equation

论文作者

Yu, Gao

论文摘要

我们使用一种粘性粒子方法来显示(能量)保守的粘性$ n $ -Peakon解决方案,用于改进的Camassa-Holm方程。为保守的$ n $ peakon解决方案的独特性提供了分散正规化作为选择原则。色散极限避免了Pexson之间的碰撞,数值结果表明,分散极限正是粘性的山峰。最后,当允许山峰的分裂时,我们举例说明保守解决方案的非唯一性。

We use a sticky particle method to show global existence of (energy) conservative sticky $N$-peakon solutions to the modified Camassa-Holm equation. A dispersion regularization is provided as a selection principle for the uniqueness of conservative $N$-peakon solutions. The dispersion limit avoids the collision between peakons, and numerical results show that the dispersion limit is exactly the sticky peakons. At last, when the splitting of peakons is allowed, we give an example to show the non-uniqueness of conservative solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源