论文标题
质量优于数量:优化脉冲星的定时阵列分析用于随机和连续重力波信号
Quality over Quantity: Optimizing pulsar timing array analysis for stochastic and continuous gravitational wave signals
论文作者
论文摘要
使用脉冲星时阵列(PTA)对重力波的搜索是一种计算昂贵的复杂分析,涉及特定于源的噪声研究。随着越来越多的脉冲星添加到阵列中,PTA分析的这一阶段将变得越来越具有挑战性。因此,优化随附的脉冲星数对于减轻数据分析的计算负担至关重要。在这里,我们提出了一套方法,以对PULSARS进行对脉冲组织的使用。首先,我们将信噪比的最大化作为选择脉冲星的代理。通过这种方法,我们针对检测随机和连续的重力波信号。接下来,我们提出一个排名,将空间相关签名之间的耦合(即单极,偶极和地狱与唐斯相关性)之间的耦合最小化。最后,我们还探讨了如何结合这两种方法。我们使用常见主义者和贝叶斯假设检验测试这些方法针对模拟数据。对于同等噪声脉冲星,我们发现最佳选择导致对数 - 巴耶斯因子的增加是引力波背景的假设检验的两倍,而不是常见的无关红噪声过程。对于相同的测试,但对于现实的EPTA数据集,在40个中选择的25个脉冲星的子集可以提供log-oikelihoodhoodhoodhoodhoodhoody比值,即总计$ 89 \%$,这意味着最佳选择的脉冲星的子集可以产生与从整个数组中获得的结果相当的结果。我们希望这些选择方法在未来的PTA数据组合中起着至关重要的作用。
The search for gravitational waves using Pulsar Timing Arrays (PTAs) is a computationally expensive complex analysis that involves source-specific noise studies. As more pulsars are added to the arrays, this stage of PTA analysis will become increasingly challenging. Therefore, optimizing the number of included pulsars is crucial to reduce the computational burden of data analysis. Here, we present a suite of methods to rank pulsars for use within the scope of PTA analysis. First, we use the maximization of the signal-to-noise ratio as a proxy to select pulsars. With this method, we target the detection of stochastic and continuous gravitational wave signals. Next, we present a ranking that minimizes the coupling between spatial correlation signatures, namely monopolar, dipolar, and Hellings & Downs correlations. Finally, we also explore how to combine these two methods. We test these approaches against mock data using frequentist and Bayesian hypothesis testing. For equal-noise pulsars, we find that an optimal selection leads to an increase in the log-Bayes factor two times steeper than a random selection for the hypothesis test of a gravitational wave background versus a common uncorrelated red noise process. For the same test but for a realistic EPTA dataset, a subset of 25 pulsars selected out of 40 can provide a log-likelihood ratio that is $89\%$ of the total, implying that an optimally selected subset of pulsars can yield results comparable to those obtained from the whole array. We expect these selection methods to play a crucial role in future PTA data combinations.