论文标题

关于验证语言模型的域适应和概括:调查

On the Domain Adaptation and Generalization of Pretrained Language Models: A Survey

论文作者

Guo, Xu, Yu, Han

论文摘要

NLP的最新进展是由一系列大规模预处理的语言模型(PLM)带来的。这些PLM为一系列NLP任务带来了巨大的性能增长,从而规避了为特定任务定制复杂设计的需求。但是,当前大多数工作都集中在特定于域的数据集上的Finetunting PLM上,而忽略了域间隙可能导致过度拟合甚至性能下降的事实。因此,找到一种适当的方法来有效调整PLM的目标领域实际上很重要。最近,已经提出了一系列方法来实现此目的。由于PLMS从Scratch训练的传统模型表现出的复杂行为,因此对域适应性的早期调查不适合PLM,并且需要重新设计PLM的域适应性才能生效。本文旨在对这些新提出的方法进行调查,并阐明如何将传统的机器学习方法应用于新进化和未来的技术。通过检查为下游任务部署PLM的问题,我们提出了从机器学习系统视图中的域适应方法的分类法,涵盖了输入增强,模型优化和个性化的方法。我们讨论并比较这些方法,并提出有希望的未来研究方向。

Recent advances in NLP are brought by a range of large-scale pretrained language models (PLMs). These PLMs have brought significant performance gains for a range of NLP tasks, circumventing the need to customize complex designs for specific tasks. However, most current work focus on finetuning PLMs on a domain-specific datasets, ignoring the fact that the domain gap can lead to overfitting and even performance drop. Therefore, it is practically important to find an appropriate method to effectively adapt PLMs to a target domain of interest. Recently, a range of methods have been proposed to achieve this purpose. Early surveys on domain adaptation are not suitable for PLMs due to the sophisticated behavior exhibited by PLMs from traditional models trained from scratch and that domain adaptation of PLMs need to be redesigned to take effect. This paper aims to provide a survey on these newly proposed methods and shed light in how to apply traditional machine learning methods to newly evolved and future technologies. By examining the issues of deploying PLMs for downstream tasks, we propose a taxonomy of domain adaptation approaches from a machine learning system view, covering methods for input augmentation, model optimization and personalization. We discuss and compare those methods and suggest promising future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源